• Title/Summary/Keyword: Strain concentration factor

Search Result 81, Processing Time 0.029 seconds

Environmental fatigue correction factor model for domestic nuclear-grade low-alloy steel

  • Gao, Jun;Liu, Chang;Tan, Jibo;Zhang, Ziyu;Wu, Xinqiang;Han, En-Hou;Shen, Rui;Wang, Bingxi;Ke, Wei
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2600-2609
    • /
    • 2021
  • Low cycle fatigue behaviors of SA508-3 low-alloy steel were investigated in room-temperature air, high-temperature air and in light water reactor (LWR) water environments. The fatigue mean curve and design curve for the low-alloy steel are developed based on the fatigue data in room-temperature and high-temperature air. The environmental fatigue model for low-alloy steel is developed by the environmental fatigue correction factor (Fen) methodology based on the fatigue data in LWR water environments with the consideration of effects of strain rate, temperature, and dissolved oxygen concentration on the fatigue life.

A standardized method to study immune responses using porcine whole blood

  • Sameer-ul-Salam Mattoo;Ram Prasad Aganja;Seung-Chai Kim;Chang-Gi Jeong;Salik Nazki;Amina Khatun;Won-Il Kim;Sang-Myeong Lee
    • Journal of Veterinary Science
    • /
    • v.24 no.1
    • /
    • pp.11.1-11.14
    • /
    • 2023
  • Background: Peripheral blood mononuclear cells (PBMCs) are commonly used to assess in vitro immune responses. However, PBMC isolation is a time-consuming procedure, introduces technical variability, and requires a relatively large volume of blood. By contrast, whole blood assay (WBA) is faster, cheaper, maintains more physiological conditions, and requires less sample volume, laboratory training, and equipment. Objectives: Herein, this study aimed to develop a porcine WBA for in vitro evaluation of immune responses. Methods: Heparinized whole blood (WB) was diluted (non-diluted, 1/2, 1/8, and 1/16) in RPMI-1640 media, followed by phorbol myristate acetate and ionomycin. After 24 h, cells were stained for interferon (IFN)-γ secreting T-cells followed by flow cytometry, and the supernatant was analyzed for tumor necrosis factor (TNF)-α. In addition, diluted WB was stimulated by lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (poly I:C), reference strain KCTC3557 (RS), field isolate (FI), of heat-killed (HK) Streptococcus suis, and porcine reproductive and respiratory syndrome virus (PRRSV). Results: The frequency of IFN-γ+CD3+ T-cells and concentration of TNF-α in the supernatant of WB increased with increasing dilution factor and were optimal at 1/8. WB TNF-α and interleukin (IL)-10 cytokine levels increased significantly following stimulation with LPS or poly I:C. Further, FI and RS induced IL-10 production in WB. Additionally, PRRSV strains increased the frequency of IFN-γ+ CD4-CD8+ cells, and IFN-γ was non-significantly induced in the supernatant of re-stimulated samples. Conclusions: We propose that the WBA is a rapid, reliable, and simple method to evaluate immune responses and WB should be diluted to trigger immune cells.

The Possible Mechanisms Involved in Citrinin Elimination by Cryptococcus podzolicus Y3 and the Effects of Extrinsic Factors on the Degradation of Citrinin

  • Zhang, Xiaoyun;Lin, Zhen;Apaliya, Maurice Tibiru;Gu, Xiangyu;Zheng, Xiangfeng;Zhao, Lina;Abdelhai, Mandour Haydar;Zhang, Hongyin;Hu, Weicheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2119-2128
    • /
    • 2017
  • Citrinin (CIT) is a toxic secondary metabolite produced by fungi belonging to the Penicillium, Aspergillus, and Monascus spp. This toxin has been detected in many agricultural products. In this study, a strain Y3 with the ability to eliminate CIT was screened and identified as Cryptococcus podzolicus, based on the sequence analysis of the internal transcribed spacer region. Neither uptake of CIT by cells nor adsorption by cell wall was involved in CIT elimination by Cryptococcus podzolicus Y3. The extracellular metabolites of Cryptococcus podzolicus Y3 stimulated by CIT or not showed no degradation for CIT. It indicated that CIT elimination was attributed to the degradation of intracellular enzyme(s). The degradation of CIT by C. podzolicus Y3 was dependent on the type of media, yeast concentration, temperature, pH, and initial concentration of CIT. Most of the CIT was degraded by C. podzolicus Y3 in NYDB medium at 42 h but not in PDB medium. The degradation rate of CIT was the highest (94%) when the concentration of C. podzolicus Y3 was $1{\times}10^8cells/ml$. The quantity of CIT degradation was highest at $28^{\circ}C$, and there was no degradation observed at 3$5^{\circ}C$. The study also showed that acidic condition (pH 4.0) was the most favorable for CIT degradation by C. podzolicus Y3. The degradation rate of CIT increased to 98% as the concentration of CIT was increased to $20{\mu}g/ml$. The toxicity of CIT degradation product(s) toward HEK293 was much lower than that of CIT.

Technological Characteristics and Safety of Enterococcus faecium Isolates from Meju, a Traditional Korean Fermented Soybean Food (메주 유래 Enterococcus faecium 균주의 기능적 특성 및 안전성)

  • Oh, Yeongmin;Kong, Haram;Jeong, Do-Won;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.255-263
    • /
    • 2021
  • In this study, we assessed the technological characteristics and safety of 88 Enterococcus faecium strains isolated from meju; the strains possess the glutamate decarboxylase gene gadA/B involved in γ-aminobutyric acid production. The study was conducted to evaluate the possibility of introducing E. faecium meju isolates as food fermentation starters. We observed that a NaCl concentration of 6% (w/v) facilitated the growth and acid production of all strains. At a NaCl concentration of 7%, 21 strains (24%) exhibited a low growth rate, 72 strains (82%) a weak acid production, and 16 strains (18%) showed no acid production. All strains exhibited protease activity at a NaCl concentration of 4%. At a NaCl concentration of 5%, 86 strains exhibited weak activity, and one strain showed no protease activity. We could not detect any lipase activity in the investigated strains. None of the strains exhibited an acquired antibiotic resistance to the seven antibiotics tested in the present study, namely ampicillin, chloramphenicol, ciprofloxacin, gentamicin, penicillin G, tetracycline, and vancomycin. We could identify the Enterococcus endocarditis antigen gene efaA and the tyrosine decarboxylase gene tdc contributing to tyramine production, in 88 meju isolates. We could not detect the Enterococcus surface protein gene esp, which is specifically possessed by human-originated E. faecium strains, in any of the 88 strains tested in the study.

Purification of Vibrio anguillarum Growth Inhibition Factor Produced by Bacillus amyloliquefaciens H41. (Bacillus amyloliquefaciens H41이 생산하는 Vibrio anguillarum 생육 저해인자의 정제)

  • Shin, Hyun-Chul;Chung, Kyung-Tae;Kim, Kwang-Hyun;Kim, Byung-Woo;Kwon, Hyun-Ju;Lee, Eun-Woo;Yum, Jong-Hwa;Rhu, Eun-Ju;Jeong, Yu-Jeong;Kim, Young-Hee
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.789-795
    • /
    • 2008
  • To study the possible use of probiotics in fish farming, we evaluated antagonism of antibacterial strain Bacillus amyloliquefaciens H41 against the fish pathogenic bacterium Vibrio anguillarum NCMB1. The purification of growth inhibition factor produced by B. amyloliquefaciens H41 was achieved by obtaining supernatant of this bacterium. The growth inhibition factor was purified to homogeneity by 70% ammonium sulfate precipitation, DEAE-sephadex A-50 ion exchange chromatography, sephadex G-200 gel filtration column chromatography, and sephadex G-50 gel filtration column chromatography with 40.8 fold of purification and 2.9% yield. The molecular weight of the purified growth inhibition factor was 48 kDa as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The optimum pH and temperature for the growth inhibition factor were pH 7.5 and $30^{\circ}C$, respectively. The activity of growth inhibition factor was enhanced slightly by some metal ions, such as $Mg^{+2}$, $Mn^{+2}$, but was inhibited by the addition of $Co^{+2}$, $Hg^{+2}$, $Zn^{+2}$ and $Ag^{+2}$. NaCl stability of the growth inhibition factor was observed with 50% residual activity at 3% NaCl concentration. Toxicity test showed that the purified B. amyloliquefaciens H41 growth inhibition factor did not affect the live of Japanese flounder (Paralichthys olivaceus) and the effectiveness was 78% of residual lethality compared to commercial antibacterial agents.

Anti-microbial and Anticariogenic Activity of Yam and Prunella Extract against Oral Microbes (구강병인균에 대한 마와 꿀풀추출물의 항균.항우식효과)

  • Jung, Gi-Ok;Min, Kyung-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.2 s.95
    • /
    • pp.137-144
    • /
    • 2007
  • Yam, Prunella was stepwise extracted with hexane, chloroform, ethyl acetate, butanol, and water. Anti-microbial activity of each extract was investigated. Hexane extract was tested for anti-microbial effect on Streptocaccus mutans, one of causative factor of dental caries. Methanol extracts of 7 plants were investigated to anti-microbial effects on S. mutans KCTC 5316, P. gingivalis KCTC 5352, S. aureus KCTC 1927 by means of agar diffusion method. Methanol extract of Yam and Prunella revealed anti-microbial activity against S. mutans, P. gingivalis, and S. aureus. Also, hexane fraction of Yam revealed anti-microbial activity against S. mutans. In sequence of hexane, chloroform, ethylacetate, butanol fraction by Prunelia acted as potent anti-microbial agent on P. gingivalis. The measured MIC of hexane fraction of Yam and Prunella on S. mutans KCTC 5316 strain was 0.25 mg/ml and 0.5 mg/ml and the MIC of hexane fraction of Prunella on S. aureus was 0.5 mg/ml. The hexane fraction of Yam and Prunella suppressed viable ceil counts(VCC) of S. mutans, especially after 24 hrs. The Prunella hexane fraction suppressed VCC of S. aureus, after 12 and 24 hrs. Tested concentrations were 0.1, 0.25 and 0.5 mg/ml. the results were compared with control (0 mg/ml). The pH of S. mutans media and GTase activity were determined to evaluate the anticariogenic activity of Yam, Prunella hexane fraction. The pH were increased from 5.6 to 7.0-7.2 in concentration of 2.0 mg/ml. Yam hexane extraction revealed 35% inhibition to GTase activity and Punella inhibited 25% of GTase. These results suggest that the hexane extracts of Yam and prunella have Antibacterial activities against S. mutans, P. gingivalis, S. aureus and have preventive effect on dental caries.

Sclareol Protects Staphylococcus aureus-Induced Lung Cell Injury via Inhibiting Alpha-Hemolysin Expression

  • Ouyang, Ping;Sun, Mao;He, Xuewen;Wang, Kaiyu;Yin, Zhongqiong;Fu, Hualin;Li, Yinglun;Geng, Yi;Shu, Gang;He, Changliang;Liang, Xiaoxia;Lai, Weiming;Li, Lixia;Zou, Yunfeng;Song, Xu;Yin, Lizi
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.19-25
    • /
    • 2017
  • Staphylococcus aureus (S. aureus) is a common gram-positive bacterium that causes serious infections in humans and animals. With the continuous emergence of methicillin-resistant S. aureus (MRSA) strains, antibiotics have limited efficacy in treating MRSA infections. Accordingly, novel agents that act on new targets are desperately needed to combat these infections. S. aureus alpha-hemolysin plays an indispensable role in its pathogenicity. In this study, we demonstrate that sclareol, a fragrant chemical compound found in clary sage, can prominently decrease alpha-hemolysin secretion in S. aureus strain USA300 at sub-inhibitory concentrations. Hemolysis assays, western-blotting, and RT-PCR were used to detect the production of alpha-hemolysin in the culture supernatant. When USA300 was co-cultured with A549 epithelial cells, sclareol could protect the A549 cells at a final concentration of $8{\mu}g/ml$. The protective capability of sclareol against the USA300-mediated injury of A549 cells was further shown by cytotoxicity assays and live/dead analysis. In conclusion, sclareol was shown to inhibit the production of S. aureus alpha-hemolysin. Sclareol has potential for development as a new agent to treat S. aureus infections.

Vibrio alginolyticus MviN is a LuxO-regulated Protein and Affects Cytotoxicity Towards Epithelioma Papulosum Cyprini (EPC) Cells

  • Cao, Xiaodan;Wang, Qiyao;Liu, Qin;Liu, Huan;He, Honghong;Zhang, Yuanxing
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.271-280
    • /
    • 2010
  • Vibrio alginolyticus, a Gram-negative marine bacterium, is one of the causative agents of fish vibriosis. Its virulence factors and pathogenesis mechanism are barely known, except for some extracellular products (ECPs) that are known to be regulated by quorum sensing system. Therefore, the present study used a microarray to analyze the transcription profiles of the wild-type V. alginolyticus and a deletion mutant of luxO, the pivotal regulator in Vibrio quorum sensing systems, which resulted in the identification of a putative virulence factor, MviN. Quantitative real-time reverse transcription PCR confirmed that the transcription of mviN was upregulated in the luxO mutant when compared with wild-type, and down regulated in a luxO-con complemented strain. Furthermore, Western blotting indicated that MviN was greatly induced during the late-exponential and stationary phases of growth, indicating that the expression of MviN was cell-density dependent and quorum sensing regulated in V. alginolyticus. Meanwhile, the mviN null mutant displayed a much slower growth rate than the wild type, signifying the essential role of MviN in V. alginolyticus. Western blotting also revealed that MviN was present as an extracellular protein in V. alginolyticus. When epithelioma papulosum cyprini (EPC) cells were treated with the ECPs of the mviN mutant, no cytotoxicity was observed, whereas EPC cells treated with the wild type exhibited pathological changes, which increased with the ECPs concentration and treatment time. Therefore, the results demonstrated that MviN is a LuxO-regulated ECPs component and involved in the pathogenicity of V. alginolyticus.

Development of Novel Impact Paint Sensor by Using Graphene based Smart Nano Composite (그래핀 기반 지능형 나노복합소재를 이용한 고감도 임팩트 페인트 센서 개발 연구)

  • Kim, Sung Yong;Park, Sehoon;Choi, Gyoung Rak;Park, Hyung-Ki;Kang, Inpil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.247-252
    • /
    • 2014
  • This paper presents a novel impact sensor which can be fabricated with smart paint made of grapheme. This smart nano paint can be easily installed on structures using a spray-on technique and that can make the sensor low cost and practical. The graphene effectively improves the piezoresistivity of the smart paint and that is available to achieve sensitive impact sensor with high gauge factor. The nano smart-paint can detect sufficient impact to cover the damaged energy range of the composite around 1~3J. The voltage outputs from the sprayed paints show fairly linear responses after signal processing. The impact makes deformation of the structure and it brings change of piezoresistivity of the paint and those converts into voltage output consequently by means of a simple signal processing system. The nano smart paint is lightweight and easily applied to the structural surface, and there is no stress concentration. The nano smart paint is expected to be a cost effective and sensitive multi-functional sensor for composites and other damage monitoring applications in the field of structural health monitoring.

Rheology of Concentrated Xanthan Gum Solutions : Steady Shear Flow Behavior

  • Song Ki-Won;Kim Yong-Seok;Chang Gap-Shik
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.129-138
    • /
    • 2006
  • Using a strain-controlled rheometer, the steady shear flow properties of aqueous xanthan gum solutions of different concentrations were measured over a wide range of shear rates. In this article, both the shear rate and concentration dependencies of steady shear flow behavior are reported from the experimentally obtained data. The viscous behavior is quantitatively discussed using a well-known power law type flow equation with a special emphasis on its importance in industrial processing and actual usage. In addition, several inelastic-viscoplastic flow models including a yield stress parameter are employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models is also examined in detail. Finally, the elastic nature is explained with a brief comment on its practical significance. Main results obtained from this study can be summarized as follows: (1) Concentrated xanthan gum solutions exhibit a finite magnitude of yield stress. This may come from the fact that a large number of hydrogen bonds in the helix structure result in a stable configuration that can show a resistance to flow. (2) Concentrated xanthan gum solutions show a marked non-Newtonian shear-thinning behavior which is well described by a power law flow equation and may be interpreted in terms of the conformational status of the polymer molecules under the influence of shear flow. This rheological feature enhances sensory qualities in food, pharmaceutical, and cosmetic products and guarantees a high degree of mix ability, pumpability, and pourability during their processing and/or actual use. (3) The Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have equivalent ability to describe the steady shear flow behavior of concentrated xanthan gum solutions, whereas both the Bingham and Casson models do not give a good applicability. (4) Concentrated xanthan gum solutions exhibit a quite important elastic flow behavior which acts as a significant factor for many industrial applications such as food, pharmaceutical, and cosmetic manufacturing processes.