• Title/Summary/Keyword: Strain amplitude

Search Result 293, Processing Time 0.025 seconds

A Prediction Model for Low Cycle Fatigue Life of Pre-strained Fe-18Mn TWIP Steel (Fe-18Mn TWIP강의 Pre-strain에 따른 저주기 피로 수명 예측 모델 연구)

  • Kim, T.W.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.259-262
    • /
    • 2009
  • The influence of pre-strain in low-cycle fatigue behavior of Fe-18Mn-0.05Al-0.6C TWIP steel was studied by conducting axial strain-controlled tests. As-received plates were deformed by rolling with reduction ratios of 10 and 30%, respectively. A triangular waveform with a constant frequency of 1 Hz was employed for low cycle fatigue test at the strain amplitudes in the range of ${\pm}0.4{\sim}{\pm}0.6$ pct. The results showed that low-cycle fatigue life was strongly dependent on the amount of pre-strain as well as the strain amplitude. Increasing the amount of prestrain, the number of reversals to failure was significantly decreased at high strain amplitudes, but the effect was negilgible at low strain amplitudes. A new model for predicting fatigue life of pre-strained body has been devised adding a correction term of ${\Delta}E_{pre-strain}$ to the energy-based fatigue damage parameter.

  • PDF

The drained deformation characteristics of sand subjected to lateral cyclic loading

  • Junhua Xiao;Jiapei Ma;Jianfeng Xue;Zhiyong Liu;Yingqi Bai
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.481-489
    • /
    • 2023
  • Drained cyclic triaxial tests were conducted on a saturated sand to examine its deformation characteristics under either axial or lateral cyclic loading condition. To apply lateral cyclic loading, the cell pressure was cycled while maintaining a constant vertical stress. The strain accumulations and flow direction in the soil were presented and discussed considering various initial stress ratios (η0), cyclic stress amplitudes and cyclic stress paths. The results indicate that axial strain accumulation shows an exponential increase with the maximum stress ratio (ηmax). The initial deviatoric stress has comparable effects with lateral cyclic stress amplitude on the accumulated axial strain. In contrast, the accumulated volumetric strain is directly proportional to the lateral cyclic stress amplitude but not much affected by η0 values. Due to the anisotropy of the soil, the accumulated axial and lateral bulging strains are greater in lateral cyclic loading when compared to axial cyclic loading even though ηmax is the same. It is also found that ηmax affects soil's lateral deformation and increasing the ratio could change the lateral deformation from contraction to bulging. The flow direction depends on ηmax in the sand under lateral cyclic loading, regardless of η0 values and the cyclic stress amplitudes, and a large ηmax could lead to great deviatoric strain but a little volumetric strain accumulation.

Discrete element numerical simulation of dynamic strength characteristics of expanded polystyrene particles in lightweight soil

  • Wei Zhou;Tian-shun Hou;Yan Yang;Yu-xin Niu;Ya-sheng Luo;Cheng Yang
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.577-595
    • /
    • 2023
  • A dynamic triaxial discrete element numerical model of lightweight soil was established using the discrete element method to study the microscopic mechanism of expanded polystyrene (EPS) particles in the soil under cyclic loading. The microscopic parameters of the discrete element model of the lightweight soil were calibrated depending on the dynamic triaxial test hysteresis curves. Based on the calibration results, the effects of the EPS particles volume ratio and amplitude on the contact force, displacement field, and velocity field of the lightweight soil under different accumulated strains were studied. The results showed that the hysteresis curves of lightweight soil exhibit nonlinearity, hysteresis, and strain accumulation. The strain accumulated in remolded soil is mainly tensile strain, and that in lightweight soil is mainly compressive strain. As the volume ratio of EPS particles increased, the contact force first increased and then decreased, and the displacement and velocity of the particles increased accordingly. With an increase in amplitude, the dynamic stress of the particle system increased, and the accumulation rate of the dynamic strain of the samples also increased. At 5% compressive strain, the contact force of the particles changed significantly and the number of particles deflected in the direction of velocity also increased considerably. These results indicated that the cemented structure of the lightweight soil began to fail at a compressive strain of 5%. Thus, a compressive strain of 5% is more reasonable than the dynamic strength failure standard of lightweight soil.

Dynamic Behavior of Decomposed Granite Soils (화강풍화토의 동적 거동)

  • 이종규
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.1
    • /
    • pp.175-183
    • /
    • 1999
  • Recently, problems related to vibrations of decomposed granite soils have acquired increasing attention in Korea because those soils cover approximately one third of the country. Both resonant column and cyclic triaxial test were performed to investigate deformation characteristics of unsaturated and cement-mixed decomposed granite soils in Suwon region. The important soil parameters in this respect are the shear moduli, dynamic moduli of elasticity and damping ratios. The dynamic parameters are influenced by variables such as strain amplitude, ratio of loading cycles, and degree of saturations, etc. Test results and data have shown that the optimum degree of saturation to the maximum shear modulus due to a capillary menisci effect was about 17~18 % at low strain amplitude and 10~15 % at intermediate strain amplitude. This paper suggests the range of threshold strain and mean shear modulus of decomposed granite soils in Suwon region. It also proposed the empirical relationship between the dynamic parameters for cement-mixed and non-mixed decomposed granite soils.

  • PDF

Finite strain nonlinear longitudinal vibration of nanorods

  • Eren, Mehmet;Aydogdu, Metin
    • Advances in nano research
    • /
    • v.6 no.4
    • /
    • pp.323-337
    • /
    • 2018
  • The nonlinear free vibration of a nanorod subjected to finite strain is investigated. The governing equation of motion in material configuration in terms of displacement is determined. By means of Galerkin method, the Fourier series solutions satisfying some typical boundary conditions are determined. The amplitude-frequency relationship and interaction between the modes are studied. The effects of nonlocal elasticity are shown for different length of nanotubes and nonlocal parameter. The results show that nonlocal effects lead to additional internal modal interaction for nanorod vibrations.

Design and Assembling of Load and Strain Measuring Equipment using Strain Gage and A/D Converter (Strain Gaged와 A/D 변환기를 이용한 하중, 변형률 측정장치 제작)

  • Park T.G.;Yang M.B.;Baek T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.293-294
    • /
    • 2006
  • The conventional strain measuring device is costly and complicated - it is not simple to understand its structure. Hence, strain gage and the A/D converter are assembled to come up with a load and a strain measuring device. The device was tested for measuring the strain in a loaded specimen and the experimental results were compared to those obtained by a commercial strain indicator.

  • PDF

Effect of Duration of Confinement and Its Affecting Factors on the Low-Amplitude Shear Modulus ($G_{max}$) of Soils (토질 최대전단탄성계수($G_{max}$)에 미치는 시간지속효과 및 그 영향요소에 관한 연구)

  • 박덕근
    • The Journal of Engineering Geology
    • /
    • v.9 no.2
    • /
    • pp.135-145
    • /
    • 1999
  • Dynamic Shear modulus (G) is one of the imfortant dynamic soil properties to estimate the response of soil to dynamic loading. Problems in engineering geo1ogy practice the require the knowledge of soil properties subjected to dynamic loadings include soil-structure interaction during earthquakes, bomb blasts, construction operations, and mining. Although the dynamic shear modulus (G) is a time-dependent property, G change with time is often neglected. In this study, the effect of duration of confinement and its affecting factors (previous stress and strain, particle size and sustained pressure, and plasticity index) on the low-amplitude shear modulus ($G_{max}$) of soils are reviewed, and some empirical correlations based on mean particle diameter and plasticity index are proposed.

  • PDF

Nonlinear response of complex fluids under LAOS(large amplitude oscillatory shear) flow

  • Ahn, Kyung-Hyun;Kyu Hyun;Nam, Jung-Gun;Manfred Wilhelm;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.15 no.2
    • /
    • pp.97-105
    • /
    • 2003
  • In the previous paper (Hyun et al.,2002), we have investigated the shape of storage modulus (G') and loss modulus (G") of complex fluids under large amplitude oscillatory shear (LAOS) flow. As the strain amplitude increases, owever, the stress curve becomes distorted and some important information may be smothered during data processing. Thus we need to investigate the stress data more precisely and systematically. In this work, we have obtained the stress data using high performance ADC (analog digital converting) card, and investigated the nonlinear response of complex fluids, 4wt% xanthan gum (XG), 2 wt% PVA/ 1 wt% Borax, and 1 wt% hyaluronic acid (HA) solutions, using Fourier transformation (FT) rheology. Comparing the strain signals in time domain with FT parameters in frequency domain, we could illustrate the sensitivity and importance of FT rheology. Diverse and unique stress patterns were observed depending on the material system as well as flow environment. It was found that they are not the outcome of experimental deficiency like wall slip but characteristics of the material system. When nonlinear response of complex fluids is analyzed, the intensity and phase angle of higher harmonic contributions should be considered together, and the shape of the stress signal was found to be strongly dependent upon phase angle.ngle.

Effect of axial stretching on large amplitude free vibration of a suspended cable

  • Chucheepsakul, Somchai;Wongsa, Sanit
    • Structural Engineering and Mechanics
    • /
    • v.11 no.2
    • /
    • pp.185-197
    • /
    • 2001
  • This paper presents the effect of axial stretching on large amplitude free vibration of an extensible suspended cable supported at the same level. The model formulation developed in this study is based on the virtual work-energy functional of cables which involves strain energy due to axial stretching and work done by external forces. The difference in the Euler equations between equilibrium and motion states is considered. The resulting equations govern the horizontal and vertical motion of the cables, and are coupled and highly nonlinear. The solution for the nonlinear static equilibrium configuration is determined by the shooting method while the solution for the large amplitude free vibration is obtained by using the second-order central finite difference scheme with time integration. Numerical examples are given to demonstrate the vibration behaviour of extensible suspended cables.

Acoustic Emission Characteristics of Ceramic Coated Steel by Plasma Spraying (플래즈머용사에 의한 세라믹 코팅 강재의 음향방출 특성)

  • Kim, G.S.
    • Journal of Power System Engineering
    • /
    • v.2 no.3
    • /
    • pp.49-54
    • /
    • 1998
  • This paper is investigated of hardness and adhesiveness of plasma sprayed coating steels by AE(Acoustic Emission) testing when loading a tensile. AE Parameters used are Event, Count, Energy and Amplitude. Test specimens are carbon steel(S45C) with sprayed coating layers of Ni-4.5wt.%Al(bond coating) and $TiO_2$(top coating), and carry out heat treatment at $800^{\circ}C\;and\;1000^{\circ}C$, respectively. The micro-hardness of the heat treatment specimen have been improved more than that of non-heat treatment. On the tensile test, the process and occurence of the exfoliation of the sprayed coating layer can be estimated by AE Characteristics of AE parameters, such as event, count, amplitude and energy, on the layer exfoliation are shown the similar aspects. The exfoliation of bond coating occure at about 20% of strain and top coating is about 5% of strain.

  • PDF