• Title/Summary/Keyword: Strain Sensors

Search Result 538, Processing Time 0.02 seconds

Dynamic monitoring of structures using strain sensors (변형률 센서를 이용한 구조물의 동적 모니터링)

  • Choi, Sung-Hoon;Eun, Jong-Pil;Kang, Dong-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.387-392
    • /
    • 2009
  • Measurement of dynamic characteristics are widely used to detect defects in mechanical or civil structures. The most common approach is to measure changes in frequency spectrum or mode shapes using accelerometers. An alternative to using mode shapes is using stain modes. Strain is more sensitive to local defects than displacement, and hence stain modes measurement is an efficient in structural health monitoring. This paper deals with dynamic monitoring of a beam structure using strain sensors. Resistive strain gages and FBG strain gages are used and their characteristics are compared. It has been known that resistive strain gages are week to EMI environment and suffers from noise at high frequency range. It has been shown that the FBG sensor is a good alternative that overcomes such difficulties.

  • PDF

Structural Health Monitoring of Nuclear Containment Building Using Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 원자력발전소 격납건물의 구조 건전성 계측)

  • Lee, Seung-Hwan;Lee, Nam-Kwon;Lee, Geum-Seok;Lee, Hong-Pyo;Yu, Yun-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.71-75
    • /
    • 2013
  • Nuclear containment building is used as second blockage to protect us from a radiation leakage caused by the natural disaster or any accidents, so it's safety is important and must be kept with continuous surveillance. In this study, we measured the strain of a nuclear containment building's wall by using FBG sensor and investigated the structural safety of a nuclear containment building. 50 FBG strain sensors and 18 FBG strain sensors were attached on the side wall and upper dome of a nuclear containment building, respectively. We measured the strains of the outside concrete wall during the Structural Integrity Test (SIT) of a nuclear containment building. The strain of an upper dome was larger than that of a side wall, about $200{\mu}{\varepsilon}$. And the very small strain was measured at vertical direction of a side wall. These experimental results were used to evaluate the structural health of nuclear containment building.

Study of body movement monitoring utilizing nano-composite strain sensors contaning Carbon nanotubes and silicone rubber

  • Azizkhani, Mohammadbagher;Kadkhodapour, Javad;Anaraki, Ali Pourkamali;Hadavand, Behzad Shirkavand;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • v.35 no.6
    • /
    • pp.779-788
    • /
    • 2020
  • Multi-Walled Carbon nanotubes (MWCNT) coupled with Silicone Rubber (SR) can represent applicable strain sensors with accessible materials, which result in good stretchability and great sensitivity. Employing these materials and given the fact that the combination of these two has been addressed in few studies, this study is trying to represent a low-cost, durable and stretchable strain sensor that can perform excellently in a high number of repeated cycles. Great stability was observed during the cyclic test after 2000 cycles. Ultrahigh sensitivity (GF>1227) along with good extensibility (ε>120%) was observed while testing the sensor at different strain rates and the various number of cycles. Further investigation is dedicated to sensor performance in the detection of human body movements. Not only the sensor performance in detecting the small strains like the vibrations on the throat was tested, but also the larger strains as observed in extension/bending of the muscle joints like knee were monitored and recorded. Bearing in mind the applicability and low-cost features, this sensor may become promising in skin-mountable devices to detect the human body motions.

Mechanical and Electrical Characteristics of Polyurethane-Based Composite Fibers (폴리우레탄 기반 복합 섬유의 기계적, 전기적 특성)

  • Jang, Hoyoung;Lee, Hyeon-Jong;Suk, Ji Won
    • Composites Research
    • /
    • v.33 no.2
    • /
    • pp.50-54
    • /
    • 2020
  • Soft robotics and wearable devices require large motions and flexibility. In this regard, there is a demand for developing stretchable strain sensors which can be attached to the soft robots and wearable devices. In this work, we fabricated stretchable and electrically conductive composite fibers by combining polyurethane (PU) and silver nanoflowers (AgNFs). The PU/AgNF composite fibers showed the change of the resistance as a function of the applied strain, demonstrating the potential for stretchable strain sensors in soft robotics and wearable devices. The mechanical and electrical characteristics of the composite fibers were measured and analyzed to use the composite fibers for stretchable strain sensors.

Fabrication and packaging techniques for the application of MEMS strain sensors to wireless crack monitoring in ageing civil infrastructures

  • Ferri, Matteo;Mancarella, Fulvio;Seshia, Ashwin;Ransley, James;Soga, Kenichi;Zalesky, Jan;Roncaglia, Alberto
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.225-238
    • /
    • 2010
  • We report on the development of a new technology for the fabrication of Micro-Electro-Mechanical-System (MEMS) strain sensors to realize a novel type of crackmeter for health monitoring of ageing civil infrastructures. The fabrication of micromachined silicon MEMS sensors based on a Silicon On Insulator (SOI) technology, designed according to a Double Ended Tuning Fork (DETF) geometry is presented, using a novel process which includes a gap narrowing procedure suitable to fabricate sensors with low motional resistance. In order to employ these sensors for crack monitoring, techniques suited for bonding the MEMS sensors on a steel surface ensuring good strain transfer from steel to silicon and a packaging technique for the bonded sensors are proposed, conceived for realizing a low-power crackmeter for ageing infrastructure monitoring. Moreover, the design of a possible crackmeter geometry suited for detection of crack contraction and expansion with a resolution of $10{\mu}m$ and very low power consumption requirements (potentially suitable for wireless operation) is presented. In these sensors, the small crackmeter range for the first field use is related to long-term observation on existing cracks in underground tunnel test sections.

Applications of fiber optic sensors for structural health monitoring

  • Kesavan, K.;Ravisankar, K.;Parivallal, S.;Sreeshylam, P.
    • Smart Structures and Systems
    • /
    • v.1 no.4
    • /
    • pp.355-368
    • /
    • 2005
  • Large and complex structures are being built now-a-days and, they are required to be functional even under extreme loading and environmental conditions. In order to meet the safety and maintenance demands, there is a need to build sensors integrated structural system, which can sense and provide necessary information about the structural response to complex loading and environment. Sophisticated tools have been developed for the design and construction of civil engineering structures. However, very little has been accomplished in the area of monitoring and rehabilitation. The employment of appropriate sensor is therefore crucial, and efforts must be directed towards non-destructive testing techniques that remain functional throughout the life of the structure. Fiber optic sensors are emerging as a superior non-destructive tool for evaluating the health of civil engineering structures. Flexibility, small in size and corrosion resistance of optical fibers allow them to be directly embedded in concrete structures. The inherent advantages of fiber optic sensors over conventional sensors include high resolution, ability to work in difficult environment, immunity from electromagnetic interference, large band width of signal, low noise and high sensitivity. This paper brings out the potential and current status of technology of fiber optic sensors for civil engineering applications. The importance of employing fiber optic sensors for health monitoring of civil engineering structures has been highlighted. Details of laboratory studies carried out on fiber optic strain sensors to assess their suitability for civil engineering applications are also covered.

Fabrication of Carbon Nanotube Strain Sensors (카본나노튜브 스트레인 센서 제작 기술)

  • Chang, Won-Seok;Song, Sun-Ah;Kim, Jae-Hyun;Han, Chang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.773-777
    • /
    • 2009
  • In this study, the strain sensing characteristics of single-wall carbon nanotubes(SWCNTs) networks were investigated to develop a film sensor for strain sensing. The SWCNTs film are formed on flexible substrates of poly(ethylene terephthalate) (PET) using spray process. In this manner we could control the transparency and obtain excellent uniformity of the networked SWCNT film. The carbon nanotube film is isotropic due to randomly oriented bundles of SWCNTs. Using experimental results it is shown that there is a nearly linear change in resistance across the film when it is subjected to tensile stress. The results presented in this study indicate the potential of such films for high sensitive transparent strain sensors on macro scale.

Development of piezocapacitive thick film strain gage based on ceramic diaphragm (세라믹 다이어프램을 이용한 정전용량형 후막 스트레인 게이지)

  • Lee, Seong-Jae;Park, Ha-Young;Kim, Jung-Ki;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1529-1531
    • /
    • 2003
  • Thick film mechanical sensors can be categorized into four main areas piezoresistive, piezoelectric, piezocapastive and mechanic tube. In this areas, the thick film strain gage is the earliest example of a primary sensing element based on the substrates. The latest thick film sensor is used various pastes that have been specifically developed for pressure sensor application. The screen printing technique has been used to fabricate the pressure sensors on alumina substrate($Al_2O_3$). Thick film capacitive of strain sensing characteristics are reported and dielectric paste based on (Ti+Ba) materials. The electric property of dielectric paste has been studied and exhibit good properly with good gage factor comparable to piezoresistive strain gage. New piezocapacitive strain sensor was designed and tested. The output of capacitive value was good characteristics.

  • PDF

Measuring strain on fiber Bragg grating sensors with a linear wavelength sweeping laser (파장 선형 스위핑 레이저를 이용한 광섬유 격자 센서의 스트레인 측정)

  • Eom, Jinseob
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.420-428
    • /
    • 2021
  • In this study, linearized sweeping of a wavelength sweeping laser was realized. This technique was used to measure the strain on a fiber Bragg grating(FBG) sensor. For linear sweeping, PID control over the wavelength difference between linear and nonlinear sweeping was employed. The performance test showed that linear sweeping with a 46 nm range and a 1 kHz frequency held up well with a 99.5 % decrement in nonlinearity after the 120th feedback. When attached to a strain gage, the FBG sensor registered strain that matched the data sheet within a difference of 4.5[με]. Altogether, linear sweeping can play a leading role in monitoring a safety of large SOC structures as well as in other wavelength sweeping laser related fields.

Ag Electrode Strain Sensor Fabrication Using Laser Direct Writing Process

  • Kim, Hyeonseok;Shin, Jaeho;Hong, Sukjoon;Ko, Seung Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.215-218
    • /
    • 2015
  • As several innovative technologies for flexible electric devices are being realized, demand for in-situ strain monitoring for flexible electric devices is being emphasized. Because flexible devices are commonly influenced by substrate strain, suitable strain sensors for flexible devices are essential for the sophisticated maneuvering of flexible devices. In this study, a flexible strain sensor based on an Ag electrode is prepared on a polyimide substrate using the LDW (laser direct writing) process. In this process, first, the Ag nanoparticles are coated on the substrate and selectively sintered using a focused laser. Because of the advantages of the LDW process (such as being mask-less, using low temperatures, and having non-vacuum characteristics), the entire fabrication process has been dramatically simplified; as a final outcome, a highly reliable strain sensor has been fabricated. Using this strain sensor, various strain conditions that arise from different bending radii can be detected by measuring real-time electrical signals.