• Title/Summary/Keyword: Strain Sensors

Search Result 538, Processing Time 0.024 seconds

On-line Strain Measurement of Rotating Blade Using Fiber Bragg Grating Sensors and Beam Coupler (광섬유 격자 센서와 빔 커플러를 사용한 회전중인 블레이드의 변형률 측정 방법)

  • Lee, In-Jae;Lee, Jong-Min;Lee, Sang-Bae;Hwang, Yo-Ha
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.11 s.116
    • /
    • pp.1172-1178
    • /
    • 2006
  • Measurement of blade strain with sensors directly installed on the blade has one critical issue, how to send the sensor signal to the ground. Strain-gauges have been dominantly used to directly measure stress of a blade and either a slip ring or a telemetry system has to be used to send measured signal to the ground. However, both systems have many inherent problems and sometimes very severe limitations to be practically used. In this paper, new on-line strain monitoring method using. FBG(Fiber Bragg Grating) sensors and a beam coupler is introduced. Measurement of rotor stress using FBG sensors is nothing new, but unlike other system which installs all necessary instruments on the rotor and use telemetry system to send data to the ground, this system makes use of light's unique characteristic - light travels through space. In this new approach, single optical fiber with many FBG sensors is installed on the blade and all other necessary instruments can be installed at ground thereby giving tremendous advantages over slip ring or telemetry system. A reference sensor is also introduced to compensate the beam coupler's transmission loss change due to rotation. The suggested system's good performance is demonstrated with experiments.

Crack mapping in RC members using distributed coaxial cable crack sensors: modeling and application

  • Greene, Gary Jr.;Belarbi, Abdeldjelil;Chen, Genda
    • Smart Structures and Systems
    • /
    • v.1 no.4
    • /
    • pp.385-404
    • /
    • 2005
  • The paper presents a model to calculate reinforcement strain using measured crack width in members under applied tension, flexure, and/or shear stress. Crack mapping using a new type of distributed coaxial cable sensors for health monitoring of large-scale civil engineering infrastructure was recently proposed and developed by the authors. This paper shows the results and performance of such sensors mounted on near surface of two flexural beams and a large scale reinforced concrete box girder that was subjected to cyclic combined shear and torsion. The main objectives of this health monitoring study was to correlate the sensor's response to strain in the member, and show that magnitude of the signal's reflection coefficient is related to increases in applied load, repeated cycles, cracking, and reinforcement yielding. The effect of multiple adjacent cracks, and signal loss was also investigated. The results shown in this paper are an important step in using the sensors for crack mapping and determining reinforcement strain for in-situ structures.

Sensor and actuator design for displacement control of continuous systems

  • Krommer, Michael;Irschik, Hans
    • Smart Structures and Systems
    • /
    • v.3 no.2
    • /
    • pp.147-172
    • /
    • 2007
  • The present paper is concerned with the design of distributed sensors and actuators. Strain type sensors and actuators are considered with their intensity continuously distributed throughout a continuous structure. The sensors measure a weighted average of the strain tensor. As a starting point for their design we introduce the concept of collocated sensors and actuators as well as the so-called natural output. Then we utilize the principle of virtual work for an auxiliary quasi-static problem to assign a mechanical interpretation to the natural output of the sensors to be designed. Therefore, we take the virtual displacements in the principle of virtual work as that part of the displacement in the original problem, which characterizes the deviation from a desired one. We introduce different kinds of distributed sensors, each of them with a mechanical interpretation other than a weighted average of the strain tensor. Additionally, we assign a mechanical interpretation to the collocated actuators as well; for that purpose we use an extended body force analogy. The sensors and actuators are applied to solve the displacement tracking problem for continuous structures; i.e., the problem of enforcing a desired displacement field. We discuss feed forward and feed back control. In the case of feed back control we show that a PD controller can stabilize the continuous system. Finally, a numerical example is presented. A desired deflection of a clamped-clamped beam is tracked by means of feed forward control, feed back control and a combination of the two.

Fatigue performance monitoring of full-scale PPC beams by using the FBG sensors

  • Wang, Licheng;Han, Jigang;Song, Yupu
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.943-957
    • /
    • 2014
  • When subjected to fatigue loading, the main failure mode of partially prestressed concrete (PPC) structure is the fatigue fracture of tensile reinforcement. Therefore, monitoring and evaluation of the steel stresses/strains in the structure are essential issues for structural design and healthy assessment. The current study experimentally investigates the possibility of using fiber Bragg grating (FBG) sensors to measure the steel strains in PPC beams in the process of fatigue loading. Six full-scale post-tensioned PPC beams were exposed to fatigue loading. Within the beams, the FBG and resistance strain gauge (RSG) sensors were independently bonded onto the surface of tensile reinforcements. A good agreement was found between the recorded results from the two different sensors. Moreover, FBG sensors show relatively good resistance to fatigue loading compared with RSG sensors, indicating that FBG sensors possess the capability for long-term health monitoring of the tensile reinforcement in PPC structures. Apart from the above findings, it can also be found that during the fatigue loading, there is stress redistribution between prestressed and non-prestressed reinforcements, and the residual strain emerges in the non-prestressed reinforcement. This phenomenon can bring about an increase of the steel stress in the non-prestressed reinforcement.

Stress Measuring Method for Beam-Column Members with Long Gauge Fiber Optic Sensors (LGFOS를 이용한 보-기둥 부재의 부재력 계측 기법 개발)

  • Park, Hyo-Seon;Baek, Jae-Min;Lee, Hong-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.9-16
    • /
    • 2006
  • In structural health monitoring, the safety of structural members are assessed by the level of stress measured by various strain sensors based on different sensing mechanisms. Since most existing strain sensors used for health monitoring system can cover a relatively small range of structural members, it is very difficult to measure the maximum value of the member subjected to varying amount and types of loads with those point sensors. The reliability of assessed safety of a member may be improved by increasing the number of sensors. It may not be also realistic to increase the number of sensors to overcome these drawbacks. In this paper, a stress measuring method for beam-column members is developed by estimating the maximum stress based on the average strains obtained from long gauge sensor. The average strain from long gage fiber optic sensor is transformed into the maximum strain by multiplication of the modification factor derived in this research.

Strain-Sensing Characteristics of Multi-Walled Carbon Nanotube Sheet

  • Jung, Daewoong;Lee, Gil S.
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.315-320
    • /
    • 2013
  • In this paper, the properties of strain sensors made of spin-capable multi-walled carbon nanotubes (MWCNTs) were characterized and their sensing mechanisms analyzed. The key contribution of this paper is a new fabrication technique that introduces a simpler transfer method compared to spin-coating or dispersion CNT. Resistance of the MWCNT sheet strain sensor increased linearly with higher strain. To investigate the effect of CNT concentration on sensitivity, two strain sensors with different layer numbers of MWCNT sheets (one and three layers) were fabricated. According to the results, the sensor with a three-layer sheet showed higher sensitivity than that with one layer. In addition, experiments were conducted to examine the effects of environmental factors, temperature, and gas on sensor sensitivity. An increase in temperature resulted in a reduction in sensor sensitivity. It was also observed that ambient gas influenced the properties of the MWCNT sheet due to charge transfer. Experimental results showed that there was a linear change in resistance in response to strain, and the resistance of the sensor fully recovered to its unstressed state and exhibited stable electromechanical properties.

Strain monitoring of the composite high pressure tanks using the FBG sensors (광섬유 센서를 이용한 복합재료 고압탱크 변형률 측정)

  • 박재성;윤종훈;공철원;장영순;이원복;노태호
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.141-145
    • /
    • 2003
  • The FBG sensors are inserted on the liners of the filament wound pressure tanks. The strains near the welding region of the liners are monitored in the hydro-pressurizing tests. The hydro-pressurizing tests consist of the proof tests at 4500 or 3300 psi and repeated test at the operating pressure, 3000 psi. The FBG sensors work well under $3000\mu\varepsilon$, but the strains calculated from the reflected signals are instable at the high strain level. The transverse compression on the sensor head results in the split of the reflected peaks, and the calculating algorism from the split peaks is not robust under the various signal condition. The FBG sensors fracture near $7500\mu\varepsilon$ level and lose their function permanently.

  • PDF

Multipoint Pressure-detection Sensors using Microbanding-induced Long-period Fiber Gratings (마이크로밴딩 장주기 광섬유 격자를 이용한 다중위치 압력감지 센서)

  • Sohn, Kyung-Rak;Choi, Young-Gill;Jang, Se-In;Choi, Jae-Yun;Shim, Joon-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.449-454
    • /
    • 2006
  • We present a pressure sensor based on the mechanically induced long-period fiber gratings (LPFG) for detecting the multi-location strain variation. The theoretical analysis is performed using a graphic method for a weakly guiding step-index fiber. The calculated results are in good agreement with the experimental results. In this study, from the fact that the optical parameters of a single-mode fiber slightly differ from manufacturing company to manufacturing company, the multipoint pressure-detection sensor systems composed two identical LPFGs are realized. When the pressure is applied two LPFG sensors at once, the resonance peaks are separated as much as about 40 nm. These types of sensor systems are well suited as a multipoint monitoring of strain or temperature in the ship or the smart structure.

Railway structure health monitoring using innovative sensing technologies (첨단계측센서를 이용한 철도 구조물의 모니터링)

  • Lee, Kyu-Wan;Jung, Sung-Hoon;Park, Eun-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.772-777
    • /
    • 2008
  • Recent development of fiber optic sensors and wireless sensor technology, made structural health monitoring of railway structures cost effective. In this paper, a micro bending fiber optic rail pad sensors are evaluated for train axle force measurement. In order to assess the usability of FBG fiber optic sensors for short-term bridge measurement, the FBG sensors and conventional strain gauges are installed at the same points and the strain results are compared. Also the impact factors are calculated using the FBG strain responses and the results are compared with the conventional sensor responses. A running KTX train was instrumented with wireless sensor system to measure the vibration characteristics and the results are compared with conventional wire sensor system.

  • PDF

An Experimental Comparison of Strain Measurement Sensors in Long-Term Monitoring Systems (장기 계측 시스템의 변형률 측정 센서에 대한 실험적 비교)

  • Jung, Hie-Young;Lee, Chang-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.191-199
    • /
    • 2000
  • Since a few decade ago, there has been a demand on the safety monitoring of civil infrastructures, such as bridges, in order to prevent possibly occurrable disaster due to human negligence. The main cause for a failure or collapse of structures is absolutely a structural crack. For the reason, it is necessary to monitor the propagation of a structural crack. But a crack in bridges is gradually propagating with the traffic loads through the long term. There are lots of sensors to monitor structural cracks on bridges, but much information about them was not given so far. Therefore, in this study, the experimental comparison for long-term monitoring sensors, especially, strain measurement sensors, in terms of duration, temperature dependency, accuracy was made extensively.

  • PDF