• 제목/요약/키워드: Strain Sensors

검색결과 538건 처리시간 0.024초

A Study on Tensile Strength of the 3D Printing Product According to the Nitrogen Concentration of Chamber Inside (챔버 내부의 질소 농도에 따른 3D프린팅 출력물의 인장 강도에 관한 연구)

  • Lee, Song Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • 제21권1호
    • /
    • pp.103-107
    • /
    • 2022
  • Scaffolds are the structures that safely protect sensors in various parts of the body. Because of scaffolds must protect sensors from load, the tensile strength of the scaffolds must be higher than 750 kgf/cm2. Currently, the tensile strength of scaffolds made with the 3d printer is 714 kgf/cm2. We confirm that the tensile strength of the scaffolds increase using air with high nitrogen concentration. In this study, we conducted experiments to find nitrogen concentrations in which the tensile strength of the specimen is higher than 750 kgf/cm2. The nitrogen control device and the nitrogen concentration sensor were installed in the chamber type 3d printer. The nitrogen concentration inside the 3d printer was changed by 5 % from 80 % to 100 %. Specimens of ASTM D 638 standard were produced under changed nitrogen concentration. We measured the tensile strength of specimens. We compared the tensile strength of specimens produced under each nitrogen concentration. We confirmed that when air with nitrogen concentration of 90 % was used, the tensile strength of scaffolds were 762 kgf/cm2.

Design and implementation of a SHM system for a heritage timber building

  • Yang, Qingshan;Wang, Juan;Kim, Sunjoong;Chen, Huihui;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • 제29권4호
    • /
    • pp.561-576
    • /
    • 2022
  • Heritage timber structures represent the history and culture of a nation. These structures have been inherited from previous generations; however, they inevitably exhibit deterioration over time, potentially leading to structural deficiencies. Structural Health Monitoring (SHM) offers the potential to assess operational anomalies, deterioration, and damage through processing and analysis of data collected from transducers and sensors mounted on the structure. This paper reports on the design and implementation of a long-term SHM system on the Feiyun Wooden Pavilion in China, a three-story timber building built more than 500 years ago. The principles and features of the design and implementation of SHM systems for heritage timber buildings are systematically discussed. In total, 104 sensors of 6 different types are deployed on the structure to monitor the environmental effects and structural responses, including air temperature and humidity, wind speed and direction, structural temperatures, strain, inclination, and acceleration. In addition, integrated data acquisition and transmission subsystem using a newly developed software platform are implemented. Selected preliminary statistical and correlation analysis using one year of monitoring data are presented to demonstrate the condition assessment capability of the system based on the monitoring data.

A practical modification to coaxial cables as damage sensor with TDR in obscured structural members and RC piles

  • Mehmet Ozgur;Sami Arsoy
    • Structural Monitoring and Maintenance
    • /
    • 제10권2호
    • /
    • pp.133-154
    • /
    • 2023
  • Obscured structural members are mostly under-evaluated during condition assessment due to lack of visual inspection capability. Insufficient information about the integrity of these structural members poses a significant risk for public safety. Time domain reflectometry (TDR) is a novel approach in structural health monitoring (SHM). Ordinary coaxial cables "as is" without a major modification are not suitable for SHM with TDR. The objective of this study is to propose a practical and cost-effective modification approach to commercially available coaxial cables in order to use them as a "cable sensor" for damage detection with the TDR equipment for obscured structural members. The experimental validation and assessment of the proposed modification approach was achieved by conducting 3-point bending tests of the model piles as a representative obscured structural member. It can be noted that the RG59/U-6 and RG6/U-4 cable sensors expose higher strain sensitivity in comparison with non-modified "as is" versions of the cables used. As a result, the cable sensors have the capability of sensing both the presence and the location of a structural damage with a maximum aberration of 3 cm. Furthermore, the crack development can be monitored by the RG59/U-6 cable sensor with a simple calibration.

Behavior Character Analysis of Super Long Suspension Bridge using GNSS (GNSS를 활용한 초장대 현수교의 거동 특성 분석)

  • Park, Je-Sung;Hong, Seunghwan;Kim, Mi-Kyeong;Kim, Tai-Hoon;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • 제35권5_2호
    • /
    • pp.831-840
    • /
    • 2019
  • Recently, the span length of long-span bridges is getting longer. As a result, it has been suggested that a new concept called 'super long-span bridge'. In case of super long span bridges, the structure is being complicated and the importance of structural stability is being emphasized. However, until recently, the most commonly used sensors (dual axis clinometer, anemometer, strain gauge, etc.) have got limit about the bridge monitoring. Consequently, we researched the application of a Global Navigation Satellite System (GNSS) to improve the limit of the existing sensors. In this study, the dual axis clinometer, the anemometer and the strain gauge together with the GNSS were used to analyze the behavior of a super-long suspension bridge. Also, we propose the detailed method of bridge monitoring using the GNSS. This study consisted of three steps. First step calculated the absolute coordinates of the towers and the longitudinal axis direction of the study bridge using the GNSS. In second step, through the analysis of the long-term behavior in shortly after construction, we calculated the permanent displacement and evaluated the stability of main towers. Third step analyzed the behavior of bridge by the wind direction and was numerically indicated. Consequently, the bridge measurement using the GNSS appeared that the acquired data is able to easy processing according to the analysis purpose. If we will use together the existing measurement sensors with the GNSS on the maintenance of the super long-span bridge, we figure each error of measurement data and improve the monitoring system through calibration. As a result, we acquire the accurate displacement of bridge and figure the behavior of bridge. Consequently, we identified that it is able to construct the effective monitoring system.

Development of Wireless Measurement System for Bridge Using PDA and Fiber Optical Sensor (PDA와 광섬유 센서를 이용한 교량의 무선계측 시스템 개발)

  • Kwak, Kae-Hwan;Hwang, Hae-Sung;Jang, Hwa-Sup;Kim, Woo-Jong;Kim, Hoi-OK
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제13권1호통권53호
    • /
    • pp.88-96
    • /
    • 2009
  • This study proposes a wireless measurement system that is a new safety management system by using an FBG sensor and a PDA. The sensor part has many advantages of implementing a wireless measurement system, and the study emploies an FBG-LVDT sensor, FBG-STRAIN sensor, FBG-TEMP sensor, and FBG-ACC sensor, using FBG sensors. Also, the study show a configuration of a signal process system for operating a wireless transmission system of FBG sensors applied to the signal process system, and engrafted the cutting edge information technology industry in order to display from a remote distance using a PDA. In order to verify the applicability of the developed FBG sensors and wireless measurement monitoring system to the field, their accuracy, and usability, the study has conducted a static and dynamic test to a bridge in the field. The study made an assessment of service for the vibration of the bridge by applying dynamic data measured by an FBG-LVDT sensor and FBG-ACC sensor to Meister's curve and prepared methods for assessing the vibration of the bridge by proposing a standard of vibration limitation given the service of vibration of the bridge. As a follow up for this study, it would be necessary to set up an overall model for the standard of service assessment established in this study.

Reduction of the residual stress of various oxide films for MEMS structure fabrication (MEMS 공정을 위한 여러 종류의 산화막의 잔류응력 제거 공정)

  • Yi, Sang-Woo;Kim, Sung-Un;Lee, Sang-Woo;Kim, Jong-Pal;Park, Sang-Jun;Lee, Sang-Chul;Cho, Dong-Il
    • Journal of Sensor Science and Technology
    • /
    • 제8권3호
    • /
    • pp.265-273
    • /
    • 1999
  • Various oxide films are commonly used as a sacrificial layer or etch mask in the fabrication of microelectromechanical systems (MEMS). Large residual strain of these oxide films causes the wafer to bow, which can have detrimental effects on photolithography and other ensuing processes. This paper investigates the residual strain of tetraethoxysilane (TEOS), low temperature oxide (LTO), 7 wt% and 10 wt% phosphosilicate glass (PSG). Euler beams and a bent-beam strain sensor are used to measure the residual strain. A poly silicon layer is used as the sacrificial layer, which is selectively etched away by $XeF_2$. First, the residual strain of as-deposited films is measured, which is quite large. The residual strain of the films is also measured after annealing them not only at $500^{\circ}C$, $600^{\circ}C$, $700^{\circ}$ and $800^{\circ}C$ in $N_2$ environment for 1 hour but also at the conditions for depositing a $2\;{\mu}m$ thick polysilicon at $585^{\circ}C$ and $625^{\circ}C$. Our results show that the 7 wt% PSG is best suited as the sacrificial layer for $2\;{\mu}$ thick polysilicon processes.

  • PDF

Experimental investigations on detecting lateral buckling for subsea pipelines with distributed fiber optic sensors

  • Feng, Xin;Wu, Wenjing;Li, Xingyu;Zhang, Xiaowei;Zhou, Jing
    • Smart Structures and Systems
    • /
    • 제15권2호
    • /
    • pp.245-258
    • /
    • 2015
  • A methodology based on distributed fiber optic sensors is proposed to detect the lateral buckling for subsea pipelines in this study. Uncontrolled buckling may lead to serious consequences for the structural integrity of a pipeline. A simple solution to this problem is to control the formation of lateral buckles among the pipeline. This firms the importance of monitoring the occurrence and evolution of pipeline buckling during the installation stage and long-term service cycle. This study reports the experimental investigations on a method for distributed detection of lateral buckling in subsea pipelines with Brillouin fiber optic sensor. The sensing scheme possesses the capability for monitoring the pipeline over the entire structure. The longitudinal strains are monitored by mounting the Brillouin optical time domain analysis (BOTDA) distributed sensors on the outer surface of the pipeline. Then the bending-induced strain is extracted to detect the occurrence and evolution of lateral buckling. Feasibility of the method was validated by using an experimental program on a small scale model pipe. The results demonstrate that the proposed approach is able to detect, in a distributed manner, the onset and progress of lateral buckling in pipelines. The methodology developed in this study provides a promising tool for assessing the structural integrity of subsea pipelines.

A Study of Fatigue Lifetime Evaluation on the Interconnect of Semiconductor Pressure Sensor According to the Various Materials (재료에 따른 반도체 압력 센서 배선의 피로 수명 평가에 관한 연구)

  • Shim Jae-Joon;Han Dong-Seop;Han Geun-Jo;Lee Sang-Suk
    • Journal of Navigation and Port Research
    • /
    • 제29권10호
    • /
    • pp.871-876
    • /
    • 2005
  • Application of semiconductor sensors has been widely spreaded into various industries because those have several merits like easy miniaturization and batch production comparison with previous mechanical sensors. But external conditions such as thermal and repetitive load have a bad effect on sensors's lifetime. Especially, this paper was focused on fatigue life of a interconnect made by various materials. Firstly we implemented the stress analysis for interconnect under thermal load and wording pressure. And the fatigue lifetime of each material was induced by Manson & Coffin Equation using the plastic stress-strain curve obtained by the plastic-elastic Finite Element Analysis. The Fatigue lifetime in its bottom is smaller than others and bending load have not an effect on the fatigue lifetime of the interconnect but the stress distribution.

Behavior of Strut in Concrete-filled FRP PSC Bridge using FBG Sensors (FBG센서를 이용한 콘크리트 충진 FRP 스트럿 보강 PSC 교량의 스트럿 거동 분석)

  • Chung, Won-Seok;Kang, Dong-Hoon;An, Zu-Og
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • 제9권6호
    • /
    • pp.11-15
    • /
    • 2009
  • Recently, a new PSC (Prestressed Concrete) bridge system, which is supported by Concrete-filled fiber-reinforced polymer (CFFRP) strut, has been introduced. This bridge is able to reduce self-weight and increase the width of traditional PSC bridges. However, no relevant research has been reported on local behavior of CFFRP strut in the bridge system. The purpose of this study is to investigate local behavior of CFFRP struts using fiber Bragg grating (FBG) sensors. Field tests were performed to examine the hoop strains and longitudinal strains of the FRP strut under various lateral positions and velocities of a test truck. It has been observed that CFFRP strut is under compression regardless of vehicle speed and location. However, the CFFRP strut is sensitive to the lateral position of vehicles in terms of strain magnitude. Results also indicated that the FBG sensors can faithfully record the hoop and longitudinal strains of the FRP strut without electro-magnetic interference.

An optical fibre monitoring system for evaluating the performance of a soil nailed slope

  • Zhu, Hong-Hu;Ho, Albert N.L.;Yin, Jian-Hua;Sun, H.W.;Pei, Hua-Fu;Hong, Cheng-Yu
    • Smart Structures and Systems
    • /
    • 제9권5호
    • /
    • pp.393-410
    • /
    • 2012
  • Conventional geotechnical instrumentation techniques available for monitoring of slopes, especially soil-nailed slopes have limitations such as electromagnetic interference, low accuracy, poor longterm reliability and difficulty in mounting a series of strain sensors on a soil nail bar with a small-diameter. This paper presents a slope monitoring system based on fibre Bragg grating (FBG) sensing technology. This monitoring system is designed to perform long-term monitoring of slope movements, strains along soil nails, and other slope reinforcement elements. All these FBG sensors are fabricated and calibrated in laboratory and a trial of this monitoring system has been successfully conducted on a roadside slope in Hong Kong. As part of the slope stability improvement works, soil nails and a toe support soldier-pile wall were constructed. During the slope works, more than 100 FBG sensors were installed on a soil nail, a soldier pile, and an in- place inclinometer. The paper presents the layout and arrangement of the instruments as well as the installation procedures adopted. Monitoring data have been collected since March 2008. This trial has demonstrated the great potential of the optical fibre monitoring system for long-term monitoring of slope performance. The advantages of the slope monitoring system and experience gained in the field implementation are also discussed in the paper.