• Title/Summary/Keyword: Strain Sensors

Search Result 538, Processing Time 0.025 seconds

Development of Self-Diagnostic Smart Concrete (자가진단형 스마트 콘크리트 개발)

  • Kim Wha-Jung;Kim Ie-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.82-88
    • /
    • 2006
  • In People usually think that smart materials and smart structures have not been developed until recent years. But those kinds of sensors have already been used for sensing damage in a variety of materials and structures. Two typical examples are piezoelectric materials (e.g., PZT) and electric strain gauges. Load cell is an example that utilizes the piezoelectric property to measure the change in physical quantities occurred by applied loads, while strain gauges are used to measure the deformation of compressive and tension members. The feasibility of using smart materials is realized for a monitoring technology when those sensors are used to monitor damages at inside or outsider of the structures. In this study, a fundamental study on the development of self diagnostic smart concrete using PZT, and unsaturated polyester electric resistance sensor.

  • PDF

Design and fabrication of force measuring system using build-up procedure (증강 원리를 이용한 힘 측정 시스템 설계 및 제작에 관한 연구)

  • Kang, Dae-Im;Song, Hou-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.86-94
    • /
    • 1993
  • In heavy industries forces which are exceeding the range of available force standard machines have to be measured. Force measuring system using build-up procedure can be applied to measure large forces efficiently. In this study strain gage type force sensors are designed and fabricated, and the build-up force measuring system with 4.5 MN capacity using the developed force sensors is 0.03% or less over the range of 600 kN .approx. 1.5 MN and the force measuring system is less than 0.06% or less over the range of 500 kN .approx. 4.5 MN.

  • PDF

Metal-Insulator Transition of Vanadium Dioxide Based Sensors (바나듐 산화물의 금속-절연체 전이현상 기반 센서 연구)

  • Baik, Jeong Min
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.314-319
    • /
    • 2014
  • Here, we review the various methods for the preparation of vanadium dioxide ($VO_2$) films and nanowires, and their potential applications to the sensors such as gas sensor, strain sensor, and temperature sensor. $VO_2$ is an interesting material on account of its easily accessible and sharp Mott metal-insulator transition (MIT) at ${\sim}68^{\circ}C$ in the bulk. The MIT is also triggered by the electric field, stress, magnetic field etc. This paper involves exceptionally sensitive hydrogen sensors based on the catalytic process between hydrogen molecules and Pd nanoparticles on the $VO_2$ surface, and fast responsive sensors based on the self-heating effects which leads to the phase changes of the $VO_2$. These features will be seen in this paper and can enable strategies for the integration of a $VO_2$ material in advanced and complex functional units such as logic gates, memory, FETs for micro/nano-systems as well as the sensors.

A decentralized approach to damage localization through smart wireless sensors

  • Jeong, Min-Joong;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.43-54
    • /
    • 2009
  • This study introduces a novel approach for locating damage in a structure using wireless sensor system with local level computational capability to alleviate data traffic load on the centralized computation. Smart wireless sensor systems, capable of iterative damage-searching, mimic an optimization process in a decentralized way. The proposed algorithm tries to detect damage in a structure by monitoring abnormal increases in strain measurements from a group of wireless sensors. Initially, this clustering technique provides a reasonably effective sensor placement within a structure. Sensor clustering also assigns a certain number of master sensors in each cluster so that they can constantly monitor the structural health of a structure. By adopting a voting system, a group of wireless sensors iteratively forages for a damage location as they can be activated as needed. Since all of the damage searching process occurs within a small group of wireless sensors, no global control or data traffic to a central system is required. Numerical simulation demonstrates that the newly developed searching algorithm implemented on wireless sensors successfully localizes stiffness damage in a plate through the local level reconfigurable function of smart sensors.

Fiber Bragg Grating Strain Sensing in Reinforced Concrete Beams (광섬유 BRAGG GRATING SENSOR를 이용한 철근 콘크리트 보의 변형 측정)

  • 김지상;이상배;김남식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.423-428
    • /
    • 2001
  • Fiber Bragg Grating sensors currently attract a great deal of attentions, mainly due to their potentials in health monitoring for civil structures and composite materials. In this experimental study, the strains of reinforced concrete beams were measured to failure In order to verify the applicability of FBG(Fiber Bragg Grating) sensors. The FBG sensors were directly buried in concrete and attached to re-bars at the time of fabrication. In this experiment, the changes of strains in concrete and re-bars were successfully measured as the movement in wavelength of light signals. The FBG sensors may be a very effective tool to investigate the behavior inside of reinforced concrete structures.

  • PDF

Sensor placement driven by a model order reduction (MOR) reasoning

  • Casciati, Fabio;Faravelli, Lucia
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.343-352
    • /
    • 2014
  • Given a body undergoing a stress-strain status as consequence of external excitations, sensors can be deployed on the accessible lateral surface of the body. The sensor readings are regarded as input of a numerical model of reduced order (i.e., the number of sensors is lower than the number of the state variables the full model would require). The goal is to locate the sensors in such a way to minimize the deviations from the response of the true (full) model. One adopts either accelerometers as sensors or devices reading relative displacements. Two applications are studied: a plane frame is first investigated; the focus is eventually on a 3D body.

Application of FBG Sensors to the Monitoring of Railway Bridges (철도교량 모니터링을 위한 FBG 센서의 응용)

  • Chung Won-Seok;Kang Dong-Hoon;Choi Eun-Soo;Lee Jun-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.10-14
    • /
    • 2006
  • FBG sensors are able to measure the strain of structures more easily and durable than electronic resistance gages and thus many researches are on the way to apply the FBG sensor for response monitering of infrastructures. This study investigates the deflection estimation technique using FBG sensors. Several FBG sensors are multiplexed in single optical fiber and installed. in parallel pairs along the length of the structure. The measured strains at the top and bottom of a cross section can be transferred to the curvature of the section which can be used to calculate its displacement. It has been demonstrated that the estimated deflections using the FBG sensor are compared well with the readings from displacement transducers. The results show that the proposed instrumentation technique is capable of estimating the vertical deflection of the structures for various loading conditions including impact and dynamic loads, which is crucial in the structural health monitoring.

  • PDF

Measurement of Material Properties of Composites for High Temperature using Fiber Bragg Grating Sensors (광섬유 브래그 격자 센서를 이용한 고온용 복합재의 물성 측정)

  • 강동훈;박상욱;김수현;김천곤;홍창선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.31-36
    • /
    • 2003
  • Recently, composite materials are widely used for nozzle, pressure vessel, skins of satellite and many structures under condition of high temperature due to good thermal characteristics such as low CTE, heat-resistance, etc. Fiber optic sensors, especially FBG(fiber Bragg grating) sensors, can be a good counterproposal of strain gages for the measurement of material properties of composites under high temperature. In this research, T700/Epoxy specimens with embedded FBG sensors were fabricated and tested at the Instron with thermal chamber from room temperature to $400^{\circ}C$. The effects of embedding optical fiber on material properties were also verified. And, the experimental results were discussed and analyzed by microphotographs of the composite specimen.

  • PDF

Fiber optic sensor technology for sensing/controlling vibration and deformation of lightweight structures (경량 구조물의 진통 및 변형 감지/제어를 위한 광섬유 센서 기술)

  • Han, Jae-Hung;Kang, Lae-Hyong;Mueller, Uwe C.;Rapp, Stephan;Baier, Horst
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.157-163
    • /
    • 2006
  • Vibration and deformation sensing control of lightweight structures using optical fiber sensor technology is introduced in this presentation. This paper shows several examples of vibration control and deformation estimation for structures using these optical fiber sensor systems. Among various optical fiber sensors, in this paper, two types of optical fiber sensors, Fabry-Perot Interferometer(EFPI) and Fiber Bragg Grating(FBG) sensors, are mainly dealt with. Fiber optic sensors show many advantages over conventional strain gages for the measurement of vibration and deformation of lightweight structures.

  • PDF

Optimal layout of long-gauge sensors for deformation distribution identification

  • Zhang, Qingqing;Xia, Qi;Zhang, Jian;Wu, Zhishen
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.389-403
    • /
    • 2016
  • Structural deflection can be identified from measured strains from long gague sensors, but the sensor layout scheme greatly influences on the accuracy of identified resutls. To determine the optimal sensor layout scheme for accurate deflection identification of the tied arch bridge, the method of optimal layout of long-gauge fiber optic sensors is studied, in which the characteristic curve is first developed by using the bending macro-strain curve under multiple target load conditions, then optimal sensor layout scheme with different number of sensors are determined. A tied arch bridge is studied as an example to verify the effectiveness and robustness of the proposed method for static and dynamic deflection identification.