• Title/Summary/Keyword: Strain Gradient Plasticity

Search Result 41, Processing Time 0.025 seconds

Evolution of Strain States and Textures During Symmetrical/Asymmetrical Cold Rolling (냉간 대칭/비대칭 압연시 압연변형율 상태와 집합조직의 형성)

  • Huh Moo-Young;Lee Jae-Pil;Lee Jae-Hyup
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.19-24
    • /
    • 2004
  • Symmetrical and asymmetrical rolling was performed in AA 1050 sheets. Asymmetrical rolling was carried out by using different roll velocities of upper and lower rolls. The effect of the reduction per rolling pass on the formation of textures and microstructures during symmetrical and asymmetrical rolling was studied. In order to intensify the shear deformation, symmetrical and asymmetrical rolling was carried out without lubrication. The strain states associated with rolling were investigated by simulations with the finite element method (FEM). A fairly homogeneous residual shear strain throughout the sheet thickness was observed after asymmetrical rolling. Symmetrical rolling with a high friction gave rise to a strong net shear strain gradient in the sheet thickness.

  • PDF

Study on Internal Void Closure in Slab ingot during Hot Plate Forging (열간 판재단조시 강괴 내부의 기공폐쇄에 관한 연구)

  • 조종래;김동권;김영득;이부윤
    • Transactions of Materials Processing
    • /
    • v.5 no.1
    • /
    • pp.18-26
    • /
    • 1996
  • In order to investigate the effect of pre-cooling of ingot on void closure in hot plate forging the internal strain and stress distributions are examined quantitatively by using ABAQUS. Simula-tions are carried out on a large slab ingot having the same temperature and the temperature gradient induced by air-cooling. It is shown that pre-cooling produces little effect on the strain behavior but remarkable effect on the hydrostatic stress at the central zone of ingot. The main factors for crushing micro-voids are the effective strain and the time integral of hydrostatic stress in the region surrounding the voids. Based on regression analysis it was found that the distortion of void can be expressed as a polynomial function of the two factors.

  • PDF

Prediction of Forming Limits for Anisotropic Sheet Metals with Considering the Effect of Strain-Path Changes (변형경로를 고려한 이방성 박판의 성형한계 예측)

  • Son H. S.;Jung S. H.;Kim Y. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.109-112
    • /
    • 2000
  • This paper presents an analytical study that can predict the path-dependent forming limits for bilinear strain paths. To predict the forming limit diagrams(FLD), the analytical procedure was performed within the framework of Marciniak and Kuczynski approach by introducing the effect of the existence of strain gradient over the stretching punch. The predicted path-dependent forming limits of an anisotropic sheet were compared with the published experimental results. It was found that the predicted path-dependent forming limits were in good agreement with the experimental data.

  • PDF

A Study of Localization for Adiabatic Shear Band Using Non-local Theory (Non-local 이론을 적용한 단열전단밴드의 국부화에 대한 연구)

  • Lee Y. S.;Lee B. S.;Whang D. S.;Yoon S. J.;Hong S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.205-208
    • /
    • 2001
  • Localized shear band is investigated through the analysis of one-dimensional model for simple shearing deformation of thermally rate dependent material. Generally mesh size or interval of nodes play an important role in determining the overall flow behavior of the material. In order to observe these size effects we adapted non-local theory by including higher order strain gradients of the equivalent strain into the constitutive equation for the flow stress. for the ease of convergence and numerical stability the inplicit finite difference scheme is employed.

  • PDF

Deformation Behavior and Dynamic Recrystallization of Torsion-Tested Alloy 718 (Alloy718의 비틀림변형과 동적재결정)

  • Park, N.K.;Kim, C.H.;Kim, N.Y;Lee, D.G.;Yeom, J.T.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.591-596
    • /
    • 2006
  • Torsion testing was employed to investigate the deformation and recrystallization behavior of coarse-grained Alloy 718, and the results are compared with the compression testing results. Mechanical testing was conducted on bulk Alloy718 samples within the temperature ranges, $1000^{\circ}C{\sim}1100^{\circ}C$. The strain gradient formed in the torsion specimens resulted in a recrystallization behavior which varied along the radial direction from the center to the surface. The flow curves based on effective stress and effective strain as obtained by Fields and Backofen's isotropic deformation theory and the dynamic recrystallization within the compression tested samples and torsion tested samples are different. The different deformation and recrystallization behavior can be rationalized by the fact that the deformation in the coarse-grained torsion specimens is not uniform and thus the strain gradient within the specimens cannot be analytically predicted by FE simulation. Thus, the extent of recrystallization cannot be properly predicted by the established recrystallization equations based on compression tests.

High temperature deformation behaviors of AZ31 Mg alloy by Artificial Neural Network (인공 신경망을 이용한 AZ31 Mg 합금의 고온 변형 거동연구)

  • Lee B. H.;Reddy N. S.;Lee C. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.231-234
    • /
    • 2005
  • The high temperature deformation behavior of AZ 31 Mg alloy was investigated by designing a back propagation neural network that uses a gradient descent-learning algorithm. A neural network modeling is an intelligent technique that can solve non-linear and complex problems by learning from the samples. Therefore, some experimental data have been firstly obtained from continuous compression tests performed on a thermo-mechanical simulator over a range of temperatures $(250-500^{\circ}C)$ with strain rates of $0.0001-100s^{-1}$ and true strains of 0.1 to 0.6. The inputs for neural network model are strain, strain rate, and temperature and the output is flow stress. It was found that the trained model could well predict the flow stress for some experimental data that have not been used in the training. Workability of a material can be evaluated by means of power dissipation map with respect to strain, strain rate and temperature. Power dissipation map was constructed using the flow stress predicted from the neural network model at finer Intervals of strain, strain rates and subsequently processing maps were developed for hot working processes for AZ 31 Mg alloy. The safe domains of hot working of AZ 31 Mg alloy were identified and validated through microstructural investigations.

  • PDF

Effect of Plastic Gradient from GND on the Behavior of Polycrystalline Solids (GND 효과에 의한 소성 구배의 다결정 고체 거동에 대한 영향)

  • Chung, Sang-Yeop;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.185-191
    • /
    • 2011
  • Plastic gradient from geometrically necessary dislocation(GND) can affect material behavior significantly. In this research, mechanical behavior of polycrystalline solid is investigated using the finite element method incorporating plastic gradient from long range dislocation or GND effect. Plastic gradient effect is implemented in the analysis model by considering a long range strain term as well as elastic and plastic terms in the multiplicative decomposition. In the model, gradient hardness coefficient and length parameter are used to evaluate the effect of the long range strains and sensitive study is conducted for the parameters. It is confirmed that the GND amplifies hardening response of polycrystals compared with the single crystal.

Modelling of strain localization in a large strain context

  • Cescotto, S.;Li, X.K.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.645-653
    • /
    • 1996
  • In order to avoid pathological mesh dependency in finite element modelling of strain localization, an isotropic elasto-plastic model with a yield function depending on the Laplacian of the equivalent plastic strain is implemented in a 4-node quadrilateral finite element with one integration point based on a mixed formulation derived from Hu-Washizu principle. The evaluation of the Laplacian is based on a least square polynomial approximation of the equivalent plastic strain around each integration point. This non local approach allows to satisfy exactly the consistency condition at each integration point. Some examples are treated to illustrate the effectiveness of the method.

Evaluation of the Residual Stress of Thin Film Based on the Nanoindentation and Finite Element Analysis. (유한요소해석과 나노인덴테이션을 활용한 박막의 잔류응력 평가)

  • 황병원;김영석;박준원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.355-358
    • /
    • 2003
  • To estimate the residual stresses in the thin film and surface coatings, combined method based on nanoindentation and finite element (FE) analysis was developed. A simple equation for estimating the residual stress was composed of the hardness and the parameters which can be driven from the nanoindentation loading and unloading behaviors. FE analysis on the nanoindentation procedure under the various residual stress levels was performed to determine the parameters that included in the equation. The equation showed a good coincidence between the estimated residual stresses and those for the FE analysis. Thus the proposed method was considered as a useful method for estimating the residual stresses in the thin film without stress free specimen.

  • PDF