• Title/Summary/Keyword: Strain Frequency Response

Search Result 154, Processing Time 0.029 seconds

Estimation of Nonlinear Site Effects of Soil Profiles in Korea (국내 지반에서의 비선형 부지효과 예측)

  • Lee, Hong-Sung;Yun, Se-Ung;Park, Du-Hee;Kim, In-Tai
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.3
    • /
    • pp.13-23
    • /
    • 2008
  • In a nonlinear site response analysis which is performed in time domain, small strain damping is modeled as viscous damping through use of various forms of Rayleigh damping formulations. Small strain damping of soil is known to be independent of the loading frequency, but the viscous damping is greatly influenced by the loading frequency. The type of Rayleigh damping formulation has a pronounced influence on the dependence. This paper performs a series of nonlinear analyses to evaluate the degree of influence of the viscous damping formulation on Korean soil profiles. Analyses highlight the strong influence of the viscous damping formulation for soil profiles exceeding 30 m in thickness, commonly used in simplified Rayleigh damping formulation overestimating energy dissipation at high frequencies due to artificially introduced damping. When using the full Rayleigh damping formulation and carefully selecting the optimum modes, the artificial damping is greatly reduced. Results are further compared to equivalent linear analyses. The equivalent linear analyses can overestimate the peak ground acceleration even for shallow profiles less than 20 m in thickness.

Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell

  • Dai, Zuocai;Jiang, Zhiyong;Zhang, Liang;Habibi, Mostafa
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.175-189
    • /
    • 2021
  • In this article, frequency characteristics, and sensitivity analysis of a size-dependent laminated composite cylindrical nanoshell under bi-directional thermal loading using Nonlocal Strain-stress Gradient Theory (NSGT) are presented. The governing equations of the laminated composite cylindrical nanoshell in thermal environment are developed using Hamilton's principle. The thermodynamic equations of the laminated cylindrical nanoshell are obtained using First-order Shear Deformation Theory (FSDT) and Fourier-expansion based Generalized Differential Quadrature element Method (FGDQM) is implemented to solve these equations and obtain natural frequency and critical temperature of the presented model. The novelty of the current study is to consider the effects of bi-directional temperature loading and sensitivity parameter on the critical temperature and frequency characteristics of the laminated composite nanostructure. Apart from semi-numerical solution, a finite element model was presented using the finite element package to simulate the response of the laminated cylindrical shell. The results created from finite element simulation illustrates a close agreement with the semi-numerical method results. Finally, the influences of temperature difference, ply angle, length scale and nonlocal parameters on the critical temperature, sensitivity, and frequency of the laminated composite nanostructure are investigated, in details.

Analysis of Vibration in Cello Bridge (첼로 브릿지의 진동 분석)

  • Choi Gi-Sang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.197-206
    • /
    • 2006
  • Vibration of string is transmitted to the front plate through bridge to cause resonance of the instrument body in viol family string instruments. Therefore. the properties. geometrical shape. and positioning of the bridge are expected to have some effect on the sound color. In this study the strain and the stress in the bridge. and the force exerted on the top plate by the bridge as the string vibrates the bridge in cello are calculated through simulation based on the theory of elasticity. The modes of vibration and the characteristic frequencies are also found. Furthermore. the effect of geometric shape of bridge on sound color is studied in terms of frequency response. The results of this study show that the vibration characteristics of bridge is quite complex and the properties and the geometrical shape of bridge have significant effect on sound color, and therefore. the sound color of a cello can be controlled by changing the geometrical shape of bridge.

Vibration Analysis of a Deploying and Spinning Beam with a Time-dependent Spinning Speed (시간에 따라 변하는 회전 속도와 함께 회전하며 전개하는 보의 진동 분석)

  • Zhu, Kefei;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.874-880
    • /
    • 2015
  • This paper presents the vibration analysis of a deploying beam with spin when the beam has a time-dependent spinning speed. In the previous studies for the deploying beams with spin, the spinning speed was time-independent. However, it is more reasonable to consider the time-dependent spinning speed. The present study introduces the time-dependent spinning speed in the modeling. The Euler-Bernoulli beam theory and von Karman nonlinear strain theory are used together to derive the equations of motion. After the equations of motion are transformed into the weak forms, the weak forms are discretized. The natural frequency and dynamic response are obtained. The effect of the time-dependent spinning speed on the dynamic response is studied.

Nonlinear oscillations of a composite microbeam reinforced with carbon nanotube based on the modified couple stress theory

  • M., Alimoradzadeh;S.D., Akbas
    • Coupled systems mechanics
    • /
    • v.11 no.6
    • /
    • pp.485-504
    • /
    • 2022
  • This paper presents nonlinear oscillations of a carbon nanotube reinforced composite beam subjected to lateral harmonic load with damping effect based on the modified couple stress theory. As reinforcing phase, three different types of single walled carbon nanotubes distribution are considered through the thickness in polymeric matrix. The non-linear strain-displacement relationship is considered in the von Kármán nonlinearity. The governing nonlinear dynamic equation is derived with using of Hamilton's principle.The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The frequency response equation and the forced vibration response of the system are obtained. Effects of patterns of reinforcement, volume fraction, excitation force and the length scale parameter on the nonlinear responses of the carbon nanotube reinforced composite beam are investigated.

Shaking table test of liquid storage tank with finite element analysis considering uplift effect

  • Zhou, Junwen;Zhao, Ming
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.369-381
    • /
    • 2021
  • The seismic responses of elevated tanks considering liquid-structure interaction are presented under horizontal earthquake. The scaled model tank is fabricated to study the dynamic responses of anchored tank and newly designed uplift tank with replaced dampers. The natural frequencies for structural mode are obtained by modal analysis. The dynamic responses of tanks are completed by finite element method, which are compared with the results from experiment. The displacement parallel and perpendicular to the excitation direction are both gained as well as structural acceleration. The strain of tank walls and the axial strain of columns are also obtained afterwards. The seismic responses of liquid storage tank can be calculated by the finite element model effectively and the results match well with the one measured by experiment. The aim is to provide a new type of tank system with vertical constraint relaxed which leads to lower stress level. With the liquid volume increasing, the structural fundamental frequency has a great reduction and the one of uplift tank are even smaller. Compared with anchored tank, the displacement of uplift tank is magnified, the strain for tank walls and columns parallel to excitation direction reduces obviously, while the one perpendicular to earthquake direction increases a lot, but the values are still small. The stress level of new tank seems to be more even due to uplift effect. The new type of tank can realize recoverable function by replacing dampers after earthquake.

Multi-dimensional seismic response control of offshore platform structures with viscoelastic dampers (II-Experimental study)

  • He, Xiao-Yu;Zhao, Tie-Wei;Li, Hong-Nan;Zhang, Jun
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.2
    • /
    • pp.175-194
    • /
    • 2016
  • Based on the change of traditional viscoelastic damper structure, a brand-new damper is designed to control simultaneously the translational vibration and the rotational vibration for platforms. Experimental study has been carried out on the mechanical properties of viscoelastic material and on its multi-dimensional seismic response control effect of viscoelastic damper. Three types of viscoelastic dampers with different shapes of viscoelastic material are designed to test the influence of excited frequency, strain amplitude and ambient temperature on the mechanical property parameters such as circular dissipation per unit, equivalent stiffness, loss factor and storage shear modulus. Then, shaking table tests are done on a group of single-storey platform systems containing one symmetric platform and three asymmetric platforms with different eccentric forms. Experimental results show that the simulation precision of the restoring force model is rather good for the shear deformation of viscoelastic damper and is also satisfied for the torsion deformation and combined deformations of viscoelastic damper. The shaking table tests have verified that the new-type viscoelastic damper is capable of mitigating the multi-dimensional seismic response of offshore platform.

유한요소-경계요소 조합에 의한 지반-말뚝 상호작용계의 주파수 응답해석

  • 김민규;조석호;임윤목;김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.443-450
    • /
    • 2000
  • In this study a numerical method for soil-pile interaction analysis buried in multi-layered half planes is presented in frequency domain using FE-BE coupling. The total soil-pile interaction system is divided into two parts so called far field and near field beam elements are used for modeling a pile and coupled with plain strain elements for soil modeling. Boundary element formulation using the multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered half-planes are performed and compared with experiment results. Through this developed method the dynamic response analysis of a pile buried in multi-layered half planes can be calculated effectively in frequency domain.

  • PDF

Performance of Different Sensors for Monitoring of the Vibration Generated during Thermosonic Non-destructive Testing

  • Kang, Bu-Byoung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.2
    • /
    • pp.111-117
    • /
    • 2011
  • Vibration monitoring is required for reliable thermosonic testing to decide whether sufficient vibration is achieved in each test for the detection of cracks. From a practical point of view, a cheaper and convenient monitoring method is better for the application to real tests. Therefore, the performance of different sensors for vibration monitoring was investigated and compared in this study to find a convenient and acceptable measurement method for thermosonics. Velocity measured by a laser vibrometer and strain provide an equivalent HI when measured at the same position. The microphone can provide a cheaper vibration monitoring device than the laser and the heating index calculated by a microphone signal shows similar characteristics to that calculated from velocity measured by the laser vibrometer. The microphone frequency response shows that it underestimates high frequency components but it is applicable to practical tests because it gives a conservative value of HI.

Designs and Tests for the Vibration Control of Full-Scale Steel Frame Structure with Added Viscoelastic Dampers (실 구조물 진동제어를 위한 점탄성 댐퍼 설계 및 적용 실험)

  • Jeoung, Jeoung-Kyo;Kim, Doo-Hoon;Kim, Young-Chan;Park, Jin-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.687-692
    • /
    • 2002
  • In order to verify the effectiveness of adding visooelastic dampers to full-scale steel frame structure on the reduction of their seismic and wind response a experimental work was carried out. First, The test was conducted on the VE dampers subjected to sinusoidal excitations under a variety of ambient temperatures, frequency, and the damper strain. Results from these tests showed that the viscoelastic dampers have high energy dissipation capacity. Second, The vibration tests was conducted of the full-scale steel frame structure with md without added VE dampers at different temperatures. Viscoelastically damped full-scale structure test result on the effect of ambient temperature show that viscoelastic dampers are very effective in reducing excessive vibration of the structure due to sinusoidal excitation over a wide ringe of ambient temperature.

  • PDF