• Title/Summary/Keyword: Strain Energy Method

Search Result 679, Processing Time 0.03 seconds

Prediction of Low Cycle Fatigue Life for Inconel 617 using Strain Energy Method (변형률 에너지법을 이용한 Inconel 617의 저주기피로 수명 예측)

  • Kim, Duck-Hoi;Kim, Ki-Gwang;Kim, Jae-Hoon;Lee, Young-Shin;Park, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.285-290
    • /
    • 2004
  • Low cycle fatigue tests are performed on the Inconel 617 that be used for a hot gas casing. The relation between strain energy density and numbers of cycles to failure is examined in order to predict the low cycle fatigue life of Inconel 617. The life predicted by the strain energy method is found to coincide with experimental data and results obtained from the Coffin-Manson method. Also the cyclic behavior of Inconel 617 is characterized by cyclic hardening with increasing number of cycle at room temperature.

  • PDF

An efficient method for structural damage localization based on the concepts of flexibility matrix and strain energy of a structure

  • Nobahari, Mehdi;Seyedpoor, Seyed Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.231-244
    • /
    • 2013
  • An efficient method is proposed here to identify multiple damage cases in structural systems using the concepts of flexibility matrix and strain energy of a structure. The flexibility matrix of the structure is accurately estimated from the first few mode shapes and natural frequencies. Then, the change of strain energy of a structural element, due to damage, evaluated by the columnar coefficients of the flexibility matrix is used to construct a damage indicator. This new indicator is named here as flexibility strain energy based index (FSEBI). In order to assess the performance of the proposed method for structural damage detection, two benchmark structures having a number of damage scenarios are considered. Numerical results demonstrate that the method can accurately locate the structural damage induced. It is also revealed that the magnitudes of the FSEBI depend on the damage severity.

Strain Dependence of Adsorption Energy of Single Layer MoS2: Possibility of Catalytic Usage

  • Jeon, Bu-Gyeong;Lee, Chang-Hui
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.355-356
    • /
    • 2016
  • It is shown that the maximum value of exchange current is obtained where hydrogen adsorption energy is near 0. This enables to estimate catalytic efficiency of a material with hydrogen adsorption energy, which is relatively easier to calculate with density fuctional theory (DFT) method. Strain dependence of the adsorption energy was studied with DFT method and adsorption energy of 0.04 eV per hydrogen atom is obtained at 30% strain.

  • PDF

Results and implications of the damage index method applied to a multi-span continuous segmental prestressed concrete bridge

  • Wang, Ming L.;Xu, Fan L.;Lloyd, George M.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.1
    • /
    • pp.37-51
    • /
    • 2000
  • Identification of damage location based on modal measurement is an important problem in structural health monitoring. The damage index method that attempts to evaluate the changes in modal strain energy distribution has been found to be effective under certain circumstances. In this paper two damage index methods using bending strain energy and shear strain energy have been evaluated for numerous cases at different locations and degrees of damage. The objective is to evaluate the feasibility of the damage index method to localize the damage on large span concrete bridge. Finite element models were used as the test structures. Finally this method was used to predict the damage location in an actual structure, using the results of a modal survey from a large concrete bridge.

Prediction of low cycle fatigue life for Inconel 617 (Inconel 617의 저주기피로 수명 예측)

  • Kim K.G.;Kim D.H.;Kim J.H.;Lee Y.S.;Paik W.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.612-615
    • /
    • 2005
  • Low cycle fatigue tests are performed on the Incollel 617 that be used fur a hot gas casing. The relation between strain energy density and numbers of cycles to failure is examined in order to predict the low cycle fatigue life of Inconel 617. The life predicted by the strain energy method is found to coincide with experimental data and results obtained from the Coffin-Mansun method. Also the cyclic behavior of Inconel 617 is characterized by cyclic hardening with increasing number of cycle at room temperature.

  • PDF

Ambiguity of Minimum Strain Energy Density Criterion and Maximum Minimum Strain Energy Density Criterion (최소 변형에너지 밀도 기준의 모호성과 최대 극소 변형에너지 밀도 기준)

  • Gu, Jae-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1155-1162
    • /
    • 2001
  • Sihs minimum strain energy density criterion(SED) often used in the mixed mode problem has the ambiguity of the choice of minimum values. In this paper, as the method to solve the problem of SED, maximum minimum strain energy density criterion is proposed that the crack propagates in the direction of having the maximum among the minimum values of modified strain energy density factor(MS), i.e., sign($\sigma$(sub)$\theta$).Smin.

Damage identification of structures by reduction of dynamic matrices using the modified modal strain energy method

  • Arefi, Shahin Lale;Gholizad, Amin
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.2
    • /
    • pp.125-147
    • /
    • 2020
  • Damage detection of structures is one of the most important topics in structural health monitoring. In practice, the response is not available at all structural degrees of freedom, and due to the installation of sensors at some degrees of freedom, responses exist only in limited number of degrees of freedom. This paper is investigated the damage detection of structures by applying two approaches, AllDOF and Dynamic Condensation Method (DCM), based on the Modified Modal Strain Energy Method (MMSEBI). In the AllDOF method, mode shapes in all degrees of freedom is available, but in the DCM the mode shapes only in some degrees of freedom are available. Therefore by methods like the DCM, mode shapes are obtained in slave degrees of freedom. So, in the first step, the responses at slave degrees of freedom extracted using the responses at master degrees of freedom. Then, using the reconstructed mode shape and obtaining the modified modal strain energy, the damages are detected. Two standard examples are used in different damage cases to evaluate the accuracy of the mentioned method. The results showed the capability of the DCM is acceptable for low mode shapes to detect the damage in structures. By increasing the number of modes, the AllDOF method identifies the locations of the damage more accurately.

Low Cycle Fatigue Life Prediction of HSLA Steel Using Total Strain Energy Density (전변형률 에너지밀도를 이용한 고강도 저 합금강의 저주기 피로수명 예측)

  • Kim, Jae-Hoon;Kim, Duck-Hoi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.166-175
    • /
    • 2002
  • Low cycle fatigue tests are performed on the HSLA steel that be developed for a submarine material. The relation between strain energy density and numbers of cycles to failure is examined in order to predict the low cycle fatigue life of HSLA steel. The cyclic properties are determined by a least square fit techniques. The life predicted by the strain energy method is found to coincide with experimental data and results obtained from the Coffin-Manson method. Also the cyclic behavior of HSLA steel is characterized by cyclic softening with increasing number of cycle at room temperature. Especially, low cycle fatigue characteristics and microstructural changes of HSLA steel are investigated according to changing tempering temperatures. In the case of HSLA steel, the $\varepsilon$-Cu is farmed in $550^{\circ}C$ of tempering temperature and enhances the low cycle fatigue properties.

Computational modelling for description of rubber-like materials with permanent deformation under cyclic loading

  • Guo, Z.Q.;Sluys, L.J.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.3
    • /
    • pp.317-328
    • /
    • 2008
  • When carbon-filled rubber specimens are subjected to cyclic loading, they do not return to their initial state after loading and subsequent unloading, but exhibit a residual strain or permanent deformation. We propose a specific form of the pseudo-elastic energy function to represent cyclic loading for incompressible, isotropic materials with stress softening and residual strain. The essence of the pseudo-elasticity theory is that material behaviour in the primary loading path is described by a common elastic strain energy function, and in unloading, reloading or secondary unloading paths by a different strain energy function. The switch between strain energy functions is controlled by the incorporation of a damage variable into the strain energy function. An extra term is added to describe the permanent deformation. The finite element implementation of the proposed model is presented in this paper. All parameters in the proposed model and elastic law can be easily estimated based on experimental data. The numerical analyses show that the results are in good agreement with experimental data.

Boundary Element Analysis of Strain Energy Release Rate G(t) for Cracked Viscoelastic Solids (균열이 있는 선형 점탄성체의 변형에너지 방출률 G(t)에 대한 경계요소 해석)

  • 박명규;이상순;서창민
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2072-2078
    • /
    • 2003
  • In this paper, the boundary element analysis of viscoelastic strain energy release rate G(t) for the cracked linear viscoelastic solids has been attempted. This study proposes the G(t) equation and the calculating method of G(t) by time-domain boundary element analysis for the viscoelastic solids. The G(t) is defined as the derivative of the viscoelastic potential energy II(t) with respect to crack length a. Two example problems are presented to show the applicability of the proposed method to the analysis of the cracked linear viscoelastic solids. Numerical results of example problems show the accuracy and effectiveness of the proposed method.