• 제목/요약/키워드: Story shear

검색결과 541건 처리시간 0.019초

Seismic performance and design method of PRC coupling beam-hybrid coupled shear wall system

  • Tian, Jianbo;Wang, Youchun;Jian, Zheng;Li, Shen;Liu, Yunhe
    • Earthquakes and Structures
    • /
    • 제16권1호
    • /
    • pp.83-96
    • /
    • 2019
  • The seismic behavior of PRC coupling beam-hybrid coupled shear wall system is analyzed by using the finite element software ABAQUS. The stress distribution of steel plate, reinforcing bar in coupling beam, reinforcing bar in slab and concrete is investigated. Meanwhile, the plastic hinges developing law of this hybrid coupled shear wall system is also studied. Further, the effect of coupling ratio, section dimensions of coupling beam, aspect ratio of single shear wall, total height of structure and the role of slab on the seismic behavior of the new structural system. A fitting formula of plate characteristic values for PRC coupling beams based on different displacement requirements is proposed through the experimental date regression analysis of PRC coupling beams at home and abroad. The seismic behavior control method for PRC coupling beam-hybrid coupled shear wall system is proposed based on the continuous connection method and through controlling the coupling ratio, the roof displacement, story drift angle of hybrid coupled shear wall system, displacement ductility of coupling beam.

2017.11.15. 포항 흥해지진의 저층 RC 비틀림 비정형 건축물의 피해 및 손상 특성 (Seismic Damage to RC Low-rise Building Structures Having Irregularities at the Ground Story During the 15 November 2017 Pohang, Korea, Earthquake)

  • 황경란;이한선
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.103-111
    • /
    • 2018
  • This study examines the seismic failure of RC low-rise building structures having irregularities at the ground story during the 15 November 2017 Pohang, Korea, earthquake, $M_w=5.4$, which is the second strongest since the government began monitoring them in 1978 in South Korea. Some 2,000 private houses were damaged or destroyed in this earthquake. Particularly, serious damage to the piloti story of RC low-rise residential building structures of fewer than five stories was observed within 3 km of the epicenter with brittle shear failure of columns and walls due to severe torsional behavior. Buildings below six stories constructed before 2005 did not have to comply with seismic design requirements, so confinement detailing of columns and walls also led to inadequate performance. However, some buildings constructed after 2005 were damaged at the flexible side of the piloti story due to the high torsional irregularity. Based on these results, this study focuses on the problems of the seismic torsion design approach in current building codes.

Extension of Direct Displacement-Based Design to Include Higher-Mode Effects in Planar Reinforced Concrete Frame Buildings

  • 아베베 베카 하일루;이종세
    • 한국지진공학회논문집
    • /
    • 제22권5호
    • /
    • pp.299-309
    • /
    • 2018
  • Now that problems with force-based seismic design have been clearly identified, design is inclined toward displacement-based methods. One such widely used method is Direct-Displacement-Based Design (DDBD). Yet, one of the shortcomings of DDBD is considering higher-mode amplification of story shear, moments, and displacements using equations obtained from limited parametric studies of regular planar frames. In this paper, a different approach to account for higher-mode effects is proposed. This approach determines the lateral secant stiffness of the building frames that fulfill the allowable inter-story drift without exceeding the desired story displacements. Using the stiffness, an elastic response spectrum analysis is carried out to determine elastic higher-mode force effects. These force effects are then combined with DDBD-obtained first-mode force effects using the appropriate modal superposition method so that design can be performed. The proposed design procedure is verified using Nonlinear Time History Analysis (NTHA) of twelve planar frames in four categories accounting for mass and stiffness irregularity along the height. In general, the NTHA response outputs compared well with the allowable limits of the performance objective. Thus, it fulfills the aim of minimizing the use of NTHA for planar frame buildings, thereby saving computational resources and effort.

Vibration-based method for story-level damage detection of the reinforced concrete structure

  • Mehboob, Saqib;Zaman, Qaiser U.
    • Computers and Concrete
    • /
    • 제27권1호
    • /
    • pp.29-39
    • /
    • 2021
  • This study aimed to develop a method for the determination of the damaged story in reinforced concrete (RC) structure with ambient vibrations, based on modified jerk energy methodology. The damage was taken as a localized reduction in the stiffness of the structural member. For loading, random white noise excitation was used, and dynamic responses from the finite element model (FEM) of 4 story RC shear frame were extracted at nodal points. The data thus obtained from the structure was used in the damage detection and localization algorithm. In the structure, two damage configurations have been introduced. In the first configuration, damage to the structure was artificially caused by a local reduction in the modulus of elasticity. In the second configuration, the damage was caused, using the Elcentro1940 and Kashmir2005 earthquakes in real-time history. The damage was successfully detected if the frequency drop was greater than 5% and the mode shape correlation remained less than 0.8. The results of the damage were also compared to the performance criteria developed in the Seismostruct software. It is demonstrated that the proposed algorithm has effectively detected the existence of the damage and can locate the damaged story for multiple damage scenarios in the RC structure.

비정형 구조물의 평면 회전축과 코어의 이동에 따른 지진응답분석 (Analysis of Seismic Response by the Movement of the Plane Rotation Axis and the Core of Atypical Structures)

  • 이다혜;김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제22권1호
    • /
    • pp.33-40
    • /
    • 2022
  • When the center of stiffness and the center of mass of the structure differ under the seismic load, torsion is caused by eccentricity. In this study, an analysis model was modeled in which the positions of the core and the plane rotation axis of a 60-story torsional atypical structure with a plane rotation angle of 1 degree per floor were different. The structural behavior of the analysis model was analyzed, and the earthquake response behavior of the structure was analyzed based on the time history analysis results. As a result, as the eccentricity of the structure increased, the eccentricity response was amplified in the high-rise part, and the bending and torsional behavior responses were complex in the low-order vibration mode. As a result of the analysis, the maximum displacement and story drift ratio increased due to the torsional behavior. The maximum story shear force and the story absolute maximum acceleration showed similarities for each analysis model according to the shape of the vibration mode of the analysis model.

골조-전단벽 구조에서 상부 전단벽 미배치의 구조효과 (Structural Effect on Curtailment of Upper Shear Wall in Frame-Shear Wall Structure)

  • 김형기
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권5호
    • /
    • pp.18-25
    • /
    • 2016
  • 본 연구는 MIDAS-Gen을 사용하여 골조-전단벽 구조에서 상부 전단벽의 미배치에 대한 구조적인 효과를 검토하였다. 본 연구에서는 해석 변수로 상부 전단벽의 미배치 층수, 상하 기둥 단면 치수의 변화, 상하 전단벽 두께 치수의 변화를 설정하였다. 골조-전단벽 구조에서 상부 전단벽의 미배치에 대한 구조적인 효과를 검토하기 위하여 전단벽의 미배치에 따른 전단력/전도모멘트 분포, 전단벽의 변곡점, 수평강성에 대하여 비교분석하였다. 본 연구의 결과는 골조-전단벽 구조에서 상부 전단벽의 미배치가 수평강성과 같은 구조성능에 미치는 영향을 정량적으로 제시하였다. 더욱이 본 연구의 결과는 합리적인 골조-전단벽 구조를 위한 구조설계 자료를 제공하는데 도움이 된다고 확인하였다.

Numerical study of the cyclic behavior of steel plate shear wall systems (SPSWs) with differently shaped openings

  • Ali, Mustafa M.;Osman, S.A.;Husam, O.A.;Al-Zand, Ahmed W.
    • Steel and Composite Structures
    • /
    • 제26권3호
    • /
    • pp.361-373
    • /
    • 2018
  • This paper presents the development of finite element (FE) models to simulate the behavior of diagonally stiffened steel plate shear wall systems (SPSWs) with differently shaped openings subjected to a cyclic load. This walling system has the potential to be used for shear elements that resist lateral loads in steel-framed buildings. A number of $\text\tiny{^1/_2}$-scale one-story buildings that were un-stiffened, stiffened and stiffened with opening SPSWs are modeled and simulated using the finite element method based on experimental data from previous research. After validating the finite element (FE) models, the effects of infill plate thickness on the cyclic behavior of steel shear walls are investigated. Furthermore, triple diagonal stiffeners are added to the steel infill plates of the SPSWs, and the effects are studied. Moreover, the effects of a number of differently shaped openings applied to the infill plate are studied. The results indicate that the bearing capacity and shear resistance are affected positively by increasing the infill plate thickness and by adding triple diagonal stiffeners. In addition, the cyclic behavior of SPSWs is improved, even with an opening in the SPSWs.

A new approach for 3-D pushover based analysis of asymmetric buildings: development and initial evaluation

  • Baros, Dimitrios K.;Anagnostopoulos, Stavros A.
    • Earthquakes and Structures
    • /
    • 제12권5호
    • /
    • pp.543-557
    • /
    • 2017
  • Results of an extensive study aiming to properly extend the well known pushover analysis into 3-D problems of asymmetric buildings are presented in this paper. The proposed procedure uses simple, 3 DOF, one-story models with shear-beam type elements in order to quantify the effects of inelastic torsional response of such buildings. Correction coefficients for the response quantities at the "stiff" and "flexible" sides are calculated using results from non-linear time history analyses of the simple models. Their values are then applied to the results of a simple, plane pushover analysis of the detailed building models. Results from the application of the new method for a set of three, conventionally designed, five-story buildings with high values of uniaxial eccentricities are compared with those obtained from multiple non-linear dynamic time history analyses, as well as from similar pushover methods addressing the same problem. This initial evaluation indicates that the proposed procedure is a clear improvement over the simple (conventional) pushover method and, in most cases, more accurate and reliable than the other methods considered. The accuracy, however, of all these methods is reduced substantially when they are applied to torsionally flexible buildings. Thus, for such challenging problems, use of inelastic dynamic analyses for a set of two component earthquake motions appears to be the preferable solution.

Analysis on the dynamic characteristics of RAC frame structures

  • Wang, Changqing;Xiao, Jianzhuang
    • Structural Engineering and Mechanics
    • /
    • 제64권4호
    • /
    • pp.461-472
    • /
    • 2017
  • The dynamic tests of recycled aggregate concrete (RAC) are carried out, the rate-dependent mechanical models of RAC are proposed. The dynamic mechanical behaviors of RAC frame structure are investigated by adopting the numerical simulation method of the finite element. It is indicated that the lateral stiffness and the hysteresis loops of RAC frame structure obtained from the numerical simulation agree well with the test results, more so for the numerical simulation which is considered the strain rate effect than for the numerical simulation with strain rate excluded. The natural vibration frequency and the lateral stiffness increase with the increase of the strain rate. The dynamic model of the lateral stiffness is proposed, which is reasonably applied to describe the effect of the strain rate on the lateral stiffness of RAC frame structure. The effect of the strain rate on the structural deformation and capacity of RAC is analyzed. The analyses show that the inter-story drift decreases with the increase of the strain rate. However, with the increasing strain rate, the structural capacity increases. The dynamic models of the base shear coefficient and the overturning moment of RAC frame structure are developed. The dynamic models are important and can be used to evaluate the strength deterioration of RAC structure under dynamic loading.

Seismic behavior and strength of L-shaped steel reinforced concrete column-concrete beam planar and spatial joints

  • Chen, Zongping;Xu, Deyi;Xu, Jinjun;Wang, Ni
    • Steel and Composite Structures
    • /
    • 제39권3호
    • /
    • pp.337-352
    • /
    • 2021
  • The study presented experimental and numerical investigation on the seismic performance of steel reinforced concrete (SRC) L-shaped column- reinforced concrete (RC) beam joints. Various parameters described as steel configuration form, axial compressive ratio, loading angle, and the existence of slab were examined through 4 planar joints and 7 spatial joints. The characteristics of the load-displacement response included the bearing capacity, ductility, story drift ratio, energy-dissipating capacity, and stiffness degradation were analyzed. The results showed that shear failure and flexural failure in the beam tip were observed for planar joints and spatial joint, respectively. And RC joint with slab failed with the plastic hinge in the slab and bottom of the beam. The results indicated that hysteretic curves of spatial joints with solid-web steel were plumper than those with hollow-web specimens. The capacity of planar joints was higher than that of space joints, while the opposite was true for energy-dissipation capacity and ductility. The high compression ratio contributed to the increase in capacity and initial stiffness of the joint. The elastic and elastic-plastic story deformation capacity of L-shaped column frame joints satisfied the code requirement. A design formula of joint shear resistance based on the superposition theory and equilibrium plasticity truss model was proposed for engineering application.