• Title/Summary/Keyword: Story drift

Search Result 419, Processing Time 0.024 seconds

Seismic Performance Evaluations of RC Bearing Wall Systems with Coupling Beams - For Apartment Buildings in 1990s (연결보가 있는 철근콘크리트 내력벽시스템의 내진성능평가 -1990년대 공동주택을 중심으로-)

  • Lee, Young-Wook;Chae, J.-Yong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.23-31
    • /
    • 2011
  • To investigate the performance of apartment buildings which were built in the 1990s and which have RC bearing wall systems with coupling beams, construction drawings of 13 buildings were collected and analyzed. To evaluate the seismic performance, FEMA 356 and FEMA 440 were selected as guidelines. For the demand curve, the seismic design spectrum in KBC 2009 is used. For each building, the performance points for life safety and the collapse prevention state are calculated. It was found that 9 out of 13 buildings (about 70%) showed damage more severe than the collapse prevention level at the performance point and more damage could be seen at the coupling beams than the walls. However, the story drift limit of FEMA 356 was satisfied for all buildings. Through the analysis of performance points, it was shown that the spectral acceleration has an inverse relationship with the natural period.

Prediction Model for the Initial Rotational Stiffness of a Double Split T Connection (상·하부 스플릿 T 접합부의 초기회전강성 예측모델)

  • Yang, Jae-Guen;Kim, Yun;Park, Jae-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.279-287
    • /
    • 2012
  • A double split tee connection is used as a connection that is suitable for ordinary moment frames or special moment frames according to the combination of variables of the thickness of the T-stub flange and the gauge distance of the high-strength bolts. In order to demonstrate safe structural behavior, a double split tee connection must meet the requirements for inter-story drift angles and the moment of connection, as defined in the Korea Building Code-Structural. In order to determine whether the these requirements are met, it is necessary to predict rotational stiffness and the ultimate plastic moment of the connection. Therefore, this study primarily aimed to propose an analytical model for predicting the rotational stiffness of a double split tee connection under a static load. Toward this end, a three-dimensional, non-linear finite element analysis was carried out. Then, the applicability of the proposed model was verified after comparing the test results of this study with other studies.

Optimization of Active Tendon Controlled Structures by Efficient Solution of LQR Control Gain (LQR 제어이득의 효율적 산정에 의한 능동텐던 구조물의 최적화)

  • Cho, Chang-Geun;Kyun, Jun-Myong;Jung, In-Kju;Park, Moon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.4
    • /
    • pp.73-80
    • /
    • 2008
  • The objective of current study is to develop an optimization technique for the seismic actively controlled building structures using active tendon devices by an efficient solution of LQR control gain. In order to solve the active control system, the Ricatti closed-loop algorithm has been applied, and the state vector has been formulated by the transfer matrix and solved by a numerical technique of the trapezoidal rule. The time-delay problem has been also considered by phase compensation. To optimize the performance index, the ratio of the weighted matrix is the design variable, allowable story drift limits of IBC 2000 and tendon forces have been applied as restraint conditions, and the optimum control program has been developed with the algorithm of the SUMT technique. In examples of the optimization problem of eight stories shear buildings, it is evaluated that the optimum controlled building is more suitable in the control of earthquake response than the uncontrolled system and can reduce the performance index to compare with the controlled system with a constant ratio of the weighted matrix.

  • PDF

Experimental Test for Seismic Performance of PCS Structural System (PCS 구조 시스템의 내진 성능 분석)

  • Park, Soon-Kyu;Yeo, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.313-322
    • /
    • 2007
  • The PCS system, which consists of precast concrete column and steel beam, is a kind of composite structural systems. In this paper, experimental study has been conducted to analyze seismic performance of bolted beam-to-column connections for the PCS system. Based on experimental results from the seismic testing of eight interior PCS specimens, it shows that behavior of PCS system is satisfactory to seismic performance criteria of ACI such as strength deterioration, stiffness degradation and energy dissipation capacity except initial stiffness. All of the specimens maintain their strength at large levels of story drift without significant loss of stiffness and show high ductility level for inelastic behavior. The energy dissipation capacity is two times greater than requirement of ACI criterion. But the initial stiffness of all specimens does not satisfy ACI criterion, and this phenomenon is similar to the other composite structural systems such as RCS, CFT system.

A Study on Horizontal Displacement Following Ability of Welded and Non-welded Building Hardware (용접형과 무용접형 하지철물의 수평변위 추종능력에 관한 연구)

  • Lee, Don-Woo;Kwak, Eui-Shin;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.75-82
    • /
    • 2016
  • Building hardware joints are welded in most cases, which have risks of fire and explosion. Besides, the secondary damage of the destruction of the welded parts can be caused by the horizontal displacement of the structure due to earthquake or wind load. This paper compared the horizontal displacement following abilities of welded building hardware and non-welded building hardware. To do this, We conducted actual formation shake table test, and checked on the horizontal displacement following ability of structure by comparing their responses to earthquake load. We made the 2m-high framework to examine the responses of the actually constructed building hardwares, and analyzed the displacement responses of the welded-typed, non-welded-typed, and cruciform bracket building hardwares. We conducted the test by increasing acceleration rate until displacement reached 40mm corresponding to allowable relative story displacement II. The result of the test showed that the building hardware using welding work made cracking and breakage on welded connections of welded building hardware, but non-welded building hardware with no use of welding work and cruciform bracket building hardware make no problem, and that non-welded building hardware is superior to that of the welded building hardware in the horizontal displacement following ability due to earthquake or wind load.

A new steel panel zone model including axial force for thin to thick column flanges

  • Mansouri, Iman;Saffari, Hamed
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.417-436
    • /
    • 2014
  • During an earthquake, steel frame columns can be subjected to high axial forces combined with inelastic rotation demand resulting from story drift. Generally, the whole beam or component can be represented with one element. In elasto-plastic analysis, subdivision is necessary if the plastic deformation occurs within two ends of beams. If effects of the joint panel are necessarily considered in the analysis, the joint panel should be represented with an independent element. It is a special element to represent the shear deformation of the joint panel in the beam-column connection zone. Several analytical models for panel zone (PZ) behavior exist, in terms of shear force-shear distortion relationships. Among these models, the Krawinkler PZ model is the most popular one which is used in the AISC code. Some studies have pointed out that Krawinkler's model gives good results for the range of thin to medium column flanges thickness. This paper, introduces a new model to estimate the response of shear force-shear distortion for the PZ including column axial force. The model is applicable to both thin and thick column flange. To achieve an appropriate PZ mathematical model first, the effects of PZ strength and stiffness on connection response are parametrically studied using finite element models. More than one thousand and four-hundred beam-column connections are included in the parametric study, with varied parameters; then based on analytical results a simple mathematical model is presented. A comparison between the results of proposed method herein with FE analyses shows the average error especially in thick column flange is significantly reduced which demonstrates the accuracy, efficiency, and simplicity of the proposed model.

Developing a modified IDA-based methodology for investigation of influencing factors on seismic collapse risk of steel intermediate moment resisting frames

  • Maddah, Mohammad M.;Eshghi, Sassan
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.367-377
    • /
    • 2020
  • Incremental dynamic analysis (IDA) widely uses for the collapse risk assessment procedures of buildings. In this study, an IDA-based collapse risk assessment methodology is proposed, which employs a novel approach for detecting the near-collapse (NC) limit state. The proposed approach uses the modal pushover analysis results to calculate the maximum inter-story drift ratio of the structure. This value, which is used as the upper-bound limit in the IDA process, depends on the structural characteristics and global seismic responses of the structure. In this paper, steel midrise intermediate moment resisting frames (IMRFs) have selected as case studies, and their collapse risk parameters are evaluated by the suggested methodology. The composite action of a concrete floor slab and steel beams, and the interaction between the infill walls and the frames could change the collapse mechanism of the structure. In this study, the influences of the metal deck floor and autoclaved aerated concrete (AAC) masonry infill walls with uniform distribution are investigated on the seismic collapse risk of the IMRFs using the proposed methodology. The results demonstrate that the suggested modified IDA method can accurately discover the near-collapse limit state. Also, this method leads to much fewer steps and lower calculation costs rather than the current IDA method. Moreover, the results show that the concrete slab and the AAC infill walls can change the collapse parameters of the structure and should be considered in the analytical modeling and the collapse assessment process of the steel mid-rise intermediate moment resisting frames.

Investigation on the performance of a new pure torsional yielding damper

  • Mahyari, Shahram Lotfi;Riahi, Hossein Tajmir;Esfahanian, Mahmoud Hashemi
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.515-530
    • /
    • 2020
  • A new type of pure torsional yielding damper made from steel pipe is proposed and introduced. The damper uses a special mechanism to apply force and therefore applies pure torsion in the damper. Uniform distribution of the shear stress caused by pure torsion resulting in widespread yielding along pipe and consequently dissipating a large amount of energy. The behavior of the damper is investigated analytically and the governing relations are derived. To examine the performance of the proposed damper, four types of the damper are experimentally tested. The results of the tests show the behavior of the system as stable and satisfactory. The behavior characteristics include initial stiffness, yielding load, yielding deformation, and dissipated energy in a cycle of hysteretic behavior. The tests results were compared with the numerical analysis and the derived analytical relations outputs. The comparison shows an acceptable and precise approximation by the analytical outputs for estimation of the proposed damper behavior. Therefore, the relations may be applied to design the braced frame system equipped by the pure torsional yielding damper. An analytical model based on analytical relationships was developed and verified. This model can be used to simulate cyclic behavior of the proposed damper in the dynamic analysis of the structures equipped with the proposed damper. A numerical study was conducted on the performance of an assumed frame with/without proposed damper. Dynamic analysis of the assumed frames for seven earthquake records demonstrate that, equipping moment-resisting frames with the proposed dampers decreases the maximum story drift of these frames with an average reduction of about 50%.

THE SITUATION AND DEVELOPMENT OF SECURITY GUARD WORKS ON OUR COUNTRY (우리나라 경호업의 현황 및 발전방안)

  • Park, Ju-Hyeon
    • Korean Security Journal
    • /
    • no.1
    • /
    • pp.123-134
    • /
    • 1997
  • Our conuntry have come out to the phenomenon to the atrocity crimes, make into a intellecture crims and specialization with them due to various change to the expension of economy growth, drift of population to cities and sense of value is plunged in confution, Now that things have come to this day, since foundation of the security guard law it first begin, ten years, civilian securities guard law was include to the civil service securities law due to amendment fo the civility secuties law newly on Dec. 30, 1995. According to the amendment, the part of the public peace of peoples livelihood were slough of the visual angle in knowledge which function of the civilies security were only be in under the government dimension were put in order to be tointly according to the such state of affairs, should found the consider a counterplan fundamentally regarding to the what to doing efforts foster the civilities securitylaw and qualitalive elevation of presidential guards. To make a long story short by few words, the question resolves itself into the following five points. The first, peoples arrengements for the attitude fo public duty service with devotedly Sustaining publicity work activities for the thire divert of the understanding of civilian security guard. The secondly, Existing security traders and security association should to support to the civilian security works. The third, The government office concerned should strengthen the licensing system in order to improve the quality of existings in order to may establishment newly systems of license and technical institute of regarding to them. The fourth, Should be newly organixed the exclusive organization of personal protective works in the police buroau for the sustaining development of civirity guard works and soundness of the upbringing. The fifth, It is necessary to found the reserch institute for the study on oretical, scholarly, study for the technical reserch and enlargement of effeciveness And try to find a solution to the Universitys function and duty, activity plan, support plan to the Department of security specialist for the come forward in succession it under the national assistance. The finally, I am sure that the Korean security association could be transiormed into the organization which reliable and receive a love from the peoples when doing best utmost to do pursuit of the structure to be a securitys legalism, specialization and total security systems.

  • PDF

Seismic Performance of RC Column-Steel Beam Connections for Large Columns (대형기둥 적용을 위한 철근콘크리트기둥-강재보 접합부의 내진성능)

  • Park, Hong Gun;Lee, Ho Jun;Kim, Chang Soo;Hwang, Hyeon Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.231-242
    • /
    • 2016
  • Earthquake resistance of RC column-steel beam (RCS) joints with simplified details were studied. Simplified details are necessary for large columns to improve the productivity and constructability. To strengthen the beam-column joint, the effects of transverse beams, studs, and U-cross ties were used. Four 2/3 scale interior RCS connections were tested under cyclic lateral loading. The specimens generally exhibited good deformation capacity exceeding 4.0% story drift ratio after yielding of both beam and beam-column joint. Ultimately, the specimens failed by shear mechanism of the joint panel. The test strengths were compared with the predictions of existing design methods.