• Title/Summary/Keyword: Story drift

Search Result 419, Processing Time 0.021 seconds

Seismic demand assessment of semi-rigid steel frames at different performance points

  • Sharma, Vijay;Shrimali, Mahendra K.;Bharti, Shiv D.;Datta, Tushar K.
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.713-730
    • /
    • 2021
  • The seismic performance of rigid steel frames is widely investigated, but that of semi-rigid (SR) steel frames are not studied extensively, especially for near-field earthquakes. In this paper, the performances of five and ten-story steel SR frames having different degrees of semi-rigidity are evaluated at four performance points in the four different deformation states, namely, the elastic, elasto-plastic, plastic, and near collapse states. The performances of the SR frames are measured by the response parameters including the maximum values of the top floor displacement, base shear, inter-story drift ratio, number of plastic hinges, and SRSS of plastic hinge rotations. These response parameters are obtained by the capacity spectrum method (CSM) using pushover analysis. The validity of the response parameters determined by the CSM is evaluated by the results of the nonlinear time history analysis (NLTHA) for both near and far-field earthquakes at different PGA levels, which are consistent with the performance points. Results of the study show that the plastic hinges of SR frame significantly increase in the range of plastic to near-collapse states for both near and far-field earthquakes. The effect of the degree of semi-rigidity is pronounced only at higher degrees of semi-rigidity. The predictions of the CSM are fairly well in comparison to the NLTHA.

Probabilistic performance-based optimal design of low-rise eccentrically braced frames considering the connection types

  • Mohammad Ali Fathalia;Seyed Rohollah Hoseini Vaez
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.673-687
    • /
    • 2023
  • In this study, the weight and the connections type layout of low-rise eccentrically braced frame (EBF) have been optimized based on performance-based design method. For this purpose, two objective functions were defined based on two different aspects on rigid connections, in one of which minimization and in the other one, maximization of the number of rigid connections was considered. These two objective functions seek to increase the area under the pushover curve, in addition to the reduction of the weight and selection of the optimum connections type layout. The performance of these objective functions was investigated in optimal design of a three-story eccentrically braced frame, using two meta-heuristic algorithms: Enhanced Colliding Bodies Optimization (ECBO) and Enhanced Vibrating Particles System (EVPS). Then, the reliability indices of the optimal designs for both objective functions were calculated for the story lateral drift limits using Monte-Carlo Simulation (MCS) method. Based on the reliability assessment results of the optimal designs and taking the three levels of safety into account, the final designs were selected and their specifications were compared.

Seismic optimization and performance assessment of special steel moment-resisting frames considering nonlinear soil-structure interaction

  • Saeed Gholizadeh;Arman Milany;Oguzhan Hasancebi
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.339-353
    • /
    • 2023
  • The primary objective of the current study is to optimize and evaluate the seismic performance of steel momentresisting frame (MRF) structures considering soil-structure interaction (SSI) effects. The structural optimization is implemented in the context of performance-based design in accordance with FEMA-350 at different confidence levels from 50% to 90% by taking into account fixed- and flexible-base conditions using an efficient metaheuristic algorithm. Nonlinear response-history analysis (NRHA) is conducted to evaluate the seismic response of structures, and the beam-on-nonlinear Winkler foundation (BNWF) model is used to simulate the soil-foundation interaction under the MRFs. The seismic performance of optimally designed fixed- and flexible-base steel MRFs are compared in terms of overall damage index, seismic collapse safety, and interstory drift ratios at different performance levels. Two illustrative examples of 6- and 12-story steel MRFs are presented. The results show that the consideration of SSI in the optimization process of 6- and 12-story steel MRFs results in an increase of 1.0 to 9.0 % and 0.5 to 5.0 % in structural weight and a slight decrease in structural seismic safety at different confidence levels.

Ductile capacity study of buckling-restrained braced steel frame with rotational connections

  • Mingming Jia;Jinzhou He;Dagang Lu
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.417-433
    • /
    • 2023
  • The maximum ductility and cumulative ductility of connection joints of Buckling-Restrained Braced Frames (BRBF) are critical to the structural overall performance, which should be matched with the BRB ductility. The two-story and one-span BRBF with a one-third scale was tested under cyclic quasi-static loading, and the top-flange beam splice (TFBS) rotational connections were proposed and adopted in BRBF. The deformation capacity of TFBS connections was observed during the test, and the relationship between structural global ductility and local connection ductility was studied. The rotational capacity of the beam-column connections and the stability performance of the BRBs are highly relevant to the structural overall performance. The hysteretic curves of BRBF are stable and full under large displacement demand imposed up to 2% story drift, and energy is dissipated as the large plastic deformation developed in the structural components. The BRBs acted as fuses and yielded first, and the cumulative plastic ductility (CPD) of BRBs is 972.6 of the second floor and 439.7 of the first floor, indicating the excellent energy dissipation capacity of BRBs. Structural members with good local ductility ensure the large global ductility of BRBF. The ductile capacity and hysteretic behavior of BRBF with TFBS connections were compared with those of BRBF with Reduced Beam Section (RBS) connections in terms of the experimental results.

Elasto-plastic time history analysis of a 117-story high structure

  • Wu, Xiaohan;Li, Yimiao;Zhang, Yunlei
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.7-17
    • /
    • 2017
  • In Chinese Design Codes, for super high-rise buildings with complex structural distribution, which are regarded as code-exceeding buildings, elasto-plastic time history analysis is needed to validate the requirement of "no collapse under rare earthquake". In this paper, a 117-story super high-rise building is discussed. It has a height of 597 m and a height-width ratio of 9.5, which have both exceeded the limitations stipulated by the Chinese Design Codes. Mega columns adopted in this structure have cross section area of about $45m^2$ at the bottom, which is infrequent in practical projects. NosaCAD and Perform-3D, both widely used in nonlinear analyses, were chosen in this study, with which two model were established and analyzed, respectively. Elasto-plastic time history analysis was conducted to look into its seismic behavior, emphasizing on the stress state and deformation abilities under intensive seismic excitation.From the comparisons on the results under rare earthquake obtained from NosaCAD and Perform-3D, the overall responses such as roof displacement, inter story drift, base shear and damage pattern of the whole structure from each software show agreement to an extent. Besides, the deformation of the structure is below the limitation of the Chinese Codes, the time sequence and distribution of damages on core tubes are reasonable, and can dissipate certain inputted energy, which indicates that the structure can meet the requirement of "no collapse under rare earthquake".

Semi-active seismic control of a 9-story benchmark building using adaptive neural-fuzzy inference system and fuzzy cooperative coevolution

  • Bozorgvar, Masoud;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2019
  • Control algorithms are the most important aspects in successful control of structures against earthquakes. In recent years, intelligent control methods rather than classical control methods have been more considered by researchers, due to some specific capabilities such as handling nonlinear and complex systems, adaptability, and robustness to errors and uncertainties. However, due to lack of learning ability of fuzzy controller, it is used in combination with a genetic algorithm, which in turn suffers from some problems like premature convergence around an incorrect target. Therefore in this research, the introduction and design of the Fuzzy Cooperative Coevolution (Fuzzy CoCo) controller and Adaptive Neural-Fuzzy Inference System (ANFIS) have been innovatively presented for semi-active seismic control. In this research, in order to improve the seismic behavior of structures, a semi-active control of building using Magneto Rheological (MR) damper is proposed to determine input voltage of Magneto Rheological (MR) dampers using ANFIS and Fuzzy CoCo. Genetic Algorithm (GA) is used to optimize the performance of controllers. In this paper, the design of controllers is based on the reduction of the Park-Ang damage index. In order to assess the effectiveness of the designed control system, its function is numerically studied on a 9-story benchmark building, and is compared to those of a Wavelet Neural Network (WNN), fuzzy logic controller optimized by genetic algorithm (GAFLC), Linear Quadratic Gaussian (LQG) and Clipped Optimal Control (COC) systems in terms of seismic performance. The results showed desirable performance of the ANFIS and Fuzzy CoCo controllers in considerably reducing the structure responses under different earthquakes; for instance ANFIS and Fuzzy CoCo controllers showed respectively 38 and 46% reductions in peak inter-story drift ($J_1$) compared to the LQG controller; 30 and 39% reductions in $J_1$ compared to the COC controller and 3 and 16% reductions in $J_1$ compared to the GAFLC controller. When compared to other controllers, one can conclude that Fuzzy CoCo controller performs better.

Seismic poundings of multi-story buildings isolated by TFPB against moat walls

  • Shakouri, Ayoub;Amiri, Gholamreza Ghodrati;Miri, Zahra Sadat;Lak, Hamed Rajaei
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.295-307
    • /
    • 2021
  • The gap provided between adjacent structures in the metropolitan cities is mostly narrow due to architectural and financial issues. Consequently, structural pounding occurs between adjacent structures during earthquakes. It causes damages, ranging from minor local to more severe ones, especially in the case of seismically isolated buildings, due to their higher displacements. However, due to the increased flexibility of isolated buildings, the problem could become more detrimental to such structures. The effect of the seismic pounding of moat walls on the response of buildings isolated by Triple Friction Pendulum Bearing (TFPB) is investigated in this paper. To this propose, two symmetric three-dimensional models, including single-story and five-story buildings, are modeled in Opensees. Nonlinear Time History Analyses (NTHA) are performed for seismic evaluation. Also, five different sizes with four different sets of friction coefficients are considered for base isolators to cover a whole range of base isolation systems with various geometry configurations and fundamental period. The results are investigated in terms of base shear, buildings' drift, and roof acceleration. Results indicated a profound effect of poundings against moat walls. In situations of potential pounding, in some cases, the influence of impact on seismic responses of multistory buildings was more remarkable.

Modeling of composite MRFs with CFT columns and WF beams

  • Herrera, Ricardo A.;Muhummud, Teerawut;Ricles, James M.;Sause, Richard
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.327-340
    • /
    • 2022
  • A vast amount of experimental and analytical research has been conducted related to the seismic behavior and performance of concrete filled steel tubular (CFT) columns. This research has resulted in a wealth of information on the component behavior. However, analytical and experimental data for structural systems with CFT columns is limited, and the well-known behavior of steel or concrete structures is assumed valid for designing these systems. This paper presents the development of an analytical model for nonlinear analysis of composite moment resisting frame (CFT-MRF) systems with CFT columns and steel wide-flange (WF) beams under seismic loading. The model integrates component models for steel WF beams, CFT columns, connections between CFT columns and WF beams, and CFT panel zones. These component models account for nonlinear behavior due to steel yielding and local buckling in the beams and columns, concrete cracking and crushing in the columns, and yielding of panel zones and connections. Component tests were used to validate the component models. The model for a CFT-MRF considers second order geometric effects from the gravity load bearing system using a lean-on column. The experimental results from the testing of a four-story CFT-MRF test structure are used as a benchmark to validate the modeling procedure. An analytical model of the test structure was created using the modeling procedure and imposed-displacement analyses were used to reproduce the tests with the analytical model of the test structure. Good agreement was found at the global and local level. The model reproduced reasonably well the story shear-story drift response as well as the column, beam and connection moment-rotation response, but overpredicted the inelastic deformation of the panel zone.

Vibration Control Effect of the Framed Building Structures according to the Stiffness Ratio of Exo-type Damping System and Damper Device Yield Ratio (Exo-type 감쇠시스템의 강성비와 감쇠장치의 항복비에 따른 라멘조 건물의 제진효과)

  • Hur, Moo-Won;Lee, Sang-Hyun;Chun, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.38-44
    • /
    • 2015
  • In this paper, the vibration control effect of the Exo-type damping system was investigated by applying the Kagome dampers to 15-story and 20-story frame structure apartment. A new Exo-type damping system composed of the dampers and supporting column was proposed in the previous work and numerical analysis were performed to investigate the effects of optimum stiffness ratio between controlled structure and supporting column, the size of damper and yield ratio of the damper. The numerical analysis results of a structure with Exo-type damping system up to the third story showed that the stiffness ratio should be higher than 7.0 and the damper device yield ratio be at least 8.0% ($V_{damper}/V_{base\;shear$) to effectively reduce the base shear and the maximum drift of the uppermost story. When the Exo-type damping system was installed up to the fifth story, the stiffness ratio should be higher than 2.5 and damper device yield ratio needs to be at least 3.5% ($V_{damper}/V_{base\;shear$) for obtaining the target performance.

Seismic Response of Self-Centering Energy Dissipative Braced Frames (셀프센터링 가새골조의 지진응답)

  • Choi, Hyun-Hoon;Christopoulos, C.;Kim, Jin-Koo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.331-336
    • /
    • 2008
  • An self-centering energy-dissipative (SCED) bracing system has recently been developed as a new seismic force resistant bracing system. The advantage of the SCED brace system is that, unlike other comparable advanced bracing systems that dissipate energy, such as the buckling restrained brace system, it has a self-centering capability that reduces or eliminates residual building deformations after major seismic events. In this study seismic performance of SCED braced frames is evaluated for a set of 20 design level earthquake records. According to analysis results the SCED systems showed more uniform interstory drift demand for buildings with 8 story or fewer. The residual deformation in SCED buildings turned out to be much less than that of moment-resisting frames.

  • PDF