• Title/Summary/Keyword: Stormwater Drainage

Search Result 44, Processing Time 0.029 seconds

A Comparative Analysis of Stormwater Runoff with Regard to Urban Green Infrastructure - A Case Study for Bundang Newtown, SungNam - (도시 녹지기반 특성에 따른 강우 유출수 비교 분석 - 성남시 분당신도시를 사례로 -)

  • Park, Eun-Jin;Kang, Kyu-Yi;Lee, Hyun-Jung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.6
    • /
    • pp.1-10
    • /
    • 2008
  • The study was aimed at analyzing the relationship between the characteristics of urban green infrastructure and stormwater runoff in a small urban watershed composed of 22 drainage basins. The green areas of which soils are not sealed and allow water infiltrate, were examined for different types of green spaces. In a comparative study for drainage basins of which green spaces are 15.5% and 34.4%, respectively, runoffs were not different with the size of green space. It was attributed to that the increase of runoff by greater road area offset the advantage of greater green area. Another comparative measurement of runoff for drainage basins with similar green area size showed that runoff decreased with greater permeable area (school ground area) and smaller road area. The runoff measurements could address that runoff rates are affected not only by green area size but also by the type of green area and other land covers related to permeability and flow into drainage. It implicated that the improvement of urban green infrastructure as a functional unit for water infiltration and interception is important for stormwater runoff management.

Analysis of runoff speed depending on the structure of stormwater pipe networks (우수관망 구조에 따른 유출 속도 분석)

  • Lee, Jinwoo;Chung, Gunhui
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.2
    • /
    • pp.121-129
    • /
    • 2018
  • Rainfall falling in the impervious area of the cities flows over the surface and into the stormwater pipe networks to be discharged from the catchment. Therefore, it is very important to determine the size of stormwater pipes based on the peak discharge to mitigate urban flood. Climate change causes the severe rainfall in the small area, then the peak rainfall can not be discharged due to the capacity of the stormwater pipes and causes the urban flood for the short time periods. To mitigate these type of flood, the large stormwater pipes have to be constructed. However, the economic factor is also very important to design the stormwater pipe networks. In this study, 4 urban catchments were selected from the frequently flooded cities. Rainfall data from Seoul and Busan weather stations were applied to calculate runoff from the catchments using SWMM model. The characteristics of the peak runoff were analyzed using linear regression model and the 95% confidence interval and the coefficient of variation was calculated. The drainage density was calculated and the runoff characteristics were analyzed. As a result, the drainage density were depended on the structure of stormwater pipe network whether the structures are dendritic or looped. As the drainage density become higher, the runoff could be predicted more accurately. it is because the possibility of flooding caused by the capacity of stormwater pipes is decreased when the drainage density is high. It would be very efficient if the structure of stormwater pipe network is considered when the network is designed.

Best Site Identification for Spatially Distributed On-Site Stormwater Control Devices in an Urban Drainage System (도시유역에서 공간적으로 분포된 소규모 강우유출수 관리시설의 최적설치위치선정)

  • Kim, Sangdan;Lim, Yong Kun;Kim, Jin Kwan;Kang, Dookee;Seo, Seongcheol;Lee, Jae Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.986-993
    • /
    • 2010
  • Spatially distributed on-site devices such as bioretentions and bioboxfilters are becoming more common as a means of controlling urban stormwater quality. One approach to modeling the cumulative catchment-scale effects of such devices is to resolve the catchment down to the scale of a land parcel or finer, and then to model each device separately. The focus of this study is to propose a semi-distributed model for simulating urban stormwater quantity and identifying best sites for spatially distributed on-site stormwater control devices in an urban drainage system. A detailed model for urban stormwater improvement conceptualization simulation is set up for a $0.9342km^2$.

Application of Stormwater Detention Facilities for Lacking Capacity of Sewers (강우시 도시 하수관거통수능부족 해소를 위한 우수저류시설의 적용)

  • Kim, Young-Ran;Kim, Jin-Young;Hwang, Sung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.343-350
    • /
    • 2004
  • For the last two decades, Seoul has always been affected by large floods. As climate change causes more frequent localized heavy rains exceeding the capacity of sewer or river to discharge water, flood damage is expected to increase. Under the situation, detention facilities for lacking capacity of sewers can control stormwater runoff to reduce flood damage in urbanized areas. In this study, in order to reduce flood damage in Cheonggyecheon areas, the capacity of detention facilities was decided to make up for the lacking capacity of main sewers in case of the rainfall in July, 2001 as large flood. The average amount of stormwater detained in eight Cheonggyecheon drainage areas is $235.09m^3/ha$. Location and size of stormwater detention facilities is designed to have effects in short term by targeting the reduction of flood damage. Schools and parks are suggested as optimal locations where detention facilities are constructed in drainage areas.

A Study on the Stormwater Drainage Method of Overflow Type for the Prevention of Urban Flood due to Abnormal Precipitation (이상강우 발생시 도시침수 방지를 위한 월류형 우수배수방법 연구)

  • Seo, Se Deok;Park, Hyung Keun;Kim, Tae Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.569-577
    • /
    • 2019
  • Urban flooding has been a frequent phenomenon in recent years caused by the increase in maximum stormwater runoff arising from abnormal rainfall due to global warming, urban development, and development of lowlands according to population inflows. In order to respond positively against abnormal precipition in the city, it is necessary to check the GWI (Green Water Infra) effect and effectively utilize the existing stormwater detention tanks and treat stormwater to prevent local flooding. In this study, Overflow Type stormwater drainage methods are evaluated as a method of preventing urban flooding in abnormal precipitation using the Dynamic Wave Analysis SWMM (Storm Water Management Model) provided by the United States Environmental Protection Agency. Comparing and analyzing the Upward Watergate Type and Overflow Type, it was analyzed that the Overflow Type reduces the maximum flood discharge by 61 % and the total flood volume by 56 % in the rainfall of Typhoon Kong-rey. The application of the Overflow Type and the natural-pneumatic drainage method to the rainfall of Typhoon Soulik resulted in a 20 % reduction in maximum flood runoff and a 67 % reduction in total flood quantity. Therefore, as a solution to the abnormal rain fall, it is possible to improve the existing stormwater detection tank and install additional facilities. It is expected to be economically possible to strom drainage under limited conditions.

Optimal Volume Estimation for Non-point Source Control Retention Considering Spatio-Temporal Variation of Land Surface (지표면의 시공간적 변화를 고려한 비점오염원 저감 저류지 최적용량산정)

  • Choi, Daegyu;Kim, Jin Kwan;Lee, Jae Kwan;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.9-18
    • /
    • 2011
  • In this study the optimal volume for non-point source control retention is estimated considering spatio-temporal variation of land surface. The 3-parameter mixed exponential probability density function is used to represent the statistical properties of rainfall events, and NRCS-CN method is applied as rainfall-runoff transformation. The catchment drainage area is divided into individual $30m{\times}30m$ cells, and runoff curve number is estimated at each cell. Using the derived probability density function theory, the stormwater probability density function at each cell is derived from the rainfall probability density function and NRCS-CN rainfall-runoff transformation. Considering the antecedent soil moisture condition at each cell and the spatial variation of CN value at the whole catchment drainage area, the ensemble stormwater capture curve is established to estimate the optimal volume for an non-point source control retention. The comparison between spatio-temporally varied land surface and constant land surface is presented as a case study for a urban drainage area.

Analysis of Flood Resilience of the Stormwater Management Using SWMM Model (SWMM 모델을 이용한 우수 관리 홍수 탄력성 분석)

  • Hwang, Soonho;Kim, Jaekyoung;Kang, Junsuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.126-126
    • /
    • 2021
  • Stormwater reduction plays an important role in the safety and resilience to flooding in urban areas. Due to rapid climate change, the world is experiencing abnormal climate phenomena, and sudden floods and concentrated torrential rains are frequently occurring in urban basins and the amount of outflow due to stormwater increases. In addition, the damage caused by urban flooding and inundation due to extreme rainfall exceeding the events that occurred in the past increases. To solve this problem, water supply, drainage, and water supply for sustainable urban development, the water management paradigm is shifting from sewage maintenance to water circulation and water-sensitive cities. So, in this study, The purpose of this study is to examine measures to increase the resilience of urban ecosystem systems for urban excellence reduction by analyzing the effects of green infra structures and LID techniques and evaluating changes in resilience. In this study, for simulating and analysis of runoff for various stormwater patterns and LID applications, Storm Water Management Model (SWMM) was used.

  • PDF

Designing a Decentralized Stormwater Management Corridor for a Flood-Prone Watershed using Surface Runoff Analysis (지표유출수 분석을 통한 상습침수유역의 분산식 우수관리통로 설계)

  • Lee, Seul;Lee, Yumi
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.13-26
    • /
    • 2015
  • Many urban areas in Korea suffer from repeated flood damage during intensive rainfall due to an increase in impervious areas caused by rapid urbanization and deteriorating sewage systems. A centralized stormwater management system has caused severe flood damage in an area that has proven unable to accommodate recent climate change and a rise in precipitation. Most flooding prevention projects that have been recently implemented focus on increasing drainage system capacity by expanding the size of sewer pipes and adding pumping stations in downstream areas. However, such measures fail to provide sustainable solutions since they cannot solve fundamental problems to reduce surface runoff caused by urbanization across the watershed. A decentralized stormwater management system is needed that can minimize surface runoff and maximize localized retention capacity, while maintaining the existing drainage systems. This study proposes a stormwater management corridor for the flood-prone watershed in the city of Dongducheon. The corridor would connect the upstream, midstream, and downstream zones using various methods for reducing stormwater runoff. The research analyzed surface runoff patterns generated across the watershed using the Modified Rational Method considering the natural topography, land cover, and soil characteristics of each sub-watershed, as well as the urban fabric and land use. The expected effects of the design were verified by the retainable volume of stormwater runoff as based on the design application. The results suggest that an open space network serve as an urban green infrastructure, potentially expanding the functional and scenic values of the landscape. This method is more sustainable and effective than an engineering-based one, and can be applied to sustainable planning and management in flood-prone urban areas.