• 제목/요약/키워드: Storm surge Level

Search Result 44, Processing Time 0.033 seconds

Beach Erosion during Storm Surge Overlapped with Tide (조위변동을 고려한 폭풍해일시의 해안침식에 관한 연구)

  • 손창배
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.6 no.2
    • /
    • pp.47-56
    • /
    • 2000
  • This paper describes a simple prediction method of beach recession induced by storm surge. In order to evaluate the severest beach erosion, it is assumed that maximum beach recession occurs at the coming of storm surge overlapped with spring tide. Consequently, total surge lev디 becomes the sum of storm surge level and tidal range. Generally, storm surge level around Korea is small compared with tidal range. Therefore total surge can be expressed as the series of surges, which have same duration as tide. Through the case studies, the author Investigates correlation between tidal range, duration, wave condition, beach slope and beach recession.

  • PDF

Study and Analysis of the Damage by the Storm Surge (폭풍해일에 의한 피해사례 연구 및 분석)

  • Hong, Weon-Sig;Park, Seong-Soo;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.447-450
    • /
    • 2008
  • A storm surge is gradually increased in the Korean peninsula. Furthermore, this phenomenon is confined not only the Korean peninsula but also the whole world. A storm surge induced by storm, typhoon, or cyclone is a phenomenon that the water surface elevation is raising by the barometric pressure difference and this water level rising threatens the coastal facilities, settlement, or lives. Most of coastal region in our country are unsafe from this disaster. Even though we are not able to prevent the generation of this phenomenon, we can reduce the damages by investigating the kind of storm surge disaster. Once we finish this investigation, we can reduce the damages by offering the information for risk prior to an invasion of storm surge. This study, we analyzed the previously occurred storm surge damages, and this data can be utilized as a guide for those who live near the coastal region providing the information about the predicting scale of the storm surge

  • PDF

Dynamic Simulation of Storm Surge and Storm Water-Combine Inundation on the Jeju Coastal Area (폭풍 해일 및 폭풍우로 인한 제주 해안역에서의 동역학적 범람 모의)

  • Lee, Jung-Lyul;Lee, Byung-Gul;Lee, Joo-Yong;Lim, Heung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1945-1949
    • /
    • 2006
  • A storm-induced coastal inundation model (SICIM) is presented to simulate the flood event during typhoon passage that often results in significant rise in sea-level heights especially in the upstream region of the basin. The SICIM is a GIS-based distributed hydrodynamic model, both storm surge and storm water inundations are taken into account. The spatial and temporal distribution of the storm water level and flux are calculated. The model was applied to Jeju Island since it has an isolated watershed that is easy to handle as a first step of model application. Another reason is that it is surrounded by coastal area exposed to storm surge inundation. The model is still advancing and will be the framework of a predictive early inundation warning system.

  • PDF

Patterns of Water Level Increase by Storm Surge and High Waves on Seawall/Quay Wall during Typhoon Maemi (태풍 매미 내습시 해일$\cdot$고파랑에 의한 호안$\cdot$안벽에서의 수위증가 패턴 고찰)

  • Kang, Yoon-Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.22-28
    • /
    • 2005
  • We investigated the characteristics of the overflow/wave overtopping, induced by the storm surge and high waves in Masan bay and Busan Coast during Typhoon 'Maemi', which landed at the southeast coast of the Korean peninsula on September, of 2003, causing a severe inundation disaster. Characteristics of the water level, increase by the overflow / wave overtopping, were discussed in two patterns. One is the increase of water level in the region, located inside of a bay, like Masan fishing port, and the waves are relatively small. The other is in the open sea, in which the waves act directly, as on the seawall in Suyong bay. In the former region, the water level increase was affected by the storm surge, as well as the long period oscillation and waves. In Masan fishing port, about $80\%$ of the water level increase on the quay wall was caused by the storm surge. In the latter one, it was greatly affected by the wave run-up. In Suyong bay, about $90\%$ of the water level increase on the seawall was caused by the wave run-up.

The effect of typhoon translation speed and landfall angle on the maximum surge height along the coastline

  • Qian, Xiaojuan;Son, Sangyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.153-153
    • /
    • 2021
  • Storm Storm event is one of major issues in South Korea due to devastating damage at its landfall. A series of statistical study on the historical typhoon records consistently insist that the typhoon translation speed (TS) is on slowdown trend annually, and thus provides an urgent topic in assessing the extreme storm surge under future climate change. Even though TS has been regarded as a principal contributor in storm surge dynamics, only a few studies have considered its impact on the storm surge. The landfall angle (LA), another key physical factor of storm surge also needs to be further investigated along with TS. This study aims to elucidate the interaction mechanism among TS, LA, coastal geometry, and storm surge synthetically by performing a series of simulations on the idealized geometries using Delft3D FM. In the simulation, various typhoons are set up according to different combinations of TS and LA, while their trajectories are assumed to be straight with the constant wind speed and the central pressure. Then, typhoons are subjected to make landfall over a set of idealized geometries that have different depth profiles and layouts (i.e., open coasts or bays). The simulation results show that: (i) For the open coasts, the maximum surge height (MSH) increases with increasing TS. (ii) For the constant bed level, a typhoon normal to the coastline resulted in peak MSH due to the lowest effect of the coastal wave. (iii) For the continental shelf with different widths, the slow-moving typhoon will generate the peak MSH around a small LA as the shelf width becomes narrow. (iv) For the bay, MSH enlarges with the ratio of L/E (the length of main-bay axis /gate size) dropping, while the greatest MSH is at L/E=1. These findings suggest that a fast-moving typhoon perpendicular to the coastline over a broad continental shelf will likely generate the extreme storm surge hazard in the future, as well as the slow-moving typhoon will make an acute landfall over a narrow continental shelf.

  • PDF

Numerical Modeling of Storm Surge around the Coast of Pusan (부산연안 폭풍해일 변동양상과 수치예측)

  • 이종섭;주귀홍;장선덕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.2
    • /
    • pp.104-111
    • /
    • 1990
  • The water level variation due to the Typhoon around the coast of Pusan in the southern sea of Korea is investigated from the observed tidal record. Water level variations at six stations along the coast are discussed in association with the meteorological data. The characteristics of storm surge at Pusan during Typhoon Thelma in 1987 is analysed using the observed data, and it is performed the numerical simulation of storm surge which includes a inverse barometric effect due to the horizontal distribution of sea sur-face pressure. From the calculation results, the peak value of storm surge in the coast of Pusan was occur-red around the 01:00 July 16th, which is well coincident with the observed water level variation at the Kadukdo. However, the calculated value at the Pusan TBM is inconsistent with the observed one, which is regarded due to a reason that the Tidal Bench Mark (TBM) locates in the channel. In the computation results, the maximum surge occurs at the coast of Nakdong estuary, which is considered primarily due to a topographic effect, and water level variation exceeded 2.5 meter in these areas while only about 60 cm in another coasts.

  • PDF

Analysis of Flood due to Storm Surge at Masan Bay (마산만에서 고조로 인한 침수원인 분석)

  • 황호동;이중우;권소현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.217-224
    • /
    • 2004
  • Open-coast storm surge computations are of value in planning and constructing engineering works, especially in coastal regions. Prediction of typhoon surge elevations is based primarily on the use of a numerical model in this study, since it is difficult to study these events in real time or with use of physical models. A simple quasi-two dimensional numerical model for storm surge is considered. In order to understand the model's underlying assumptions, range of validity, and application, we discussed several aspects of typhoons and the physical factors governing storm generation processes. We also followed the basic governing equation, together with the assumption generally taken in their development, to see the principle characteristics of the model from a physical as well as a mathematical point of view. The equations consistent with the model described here are reduced forms of the basic equations and their effects on the resulting numerical scheme are discussed. Finally we applied the model discussed above to a storm surge problem at Masan Bay, the south coast of Korea Effects of astronomical tide, initial water level, and atmospheric pressure setup are considered. We then analyzed the flood at the coastal city and proposed a reasonable way of flood control.

  • PDF

Inundation Analysis Considering Water Waves and Storm Surge in the Coastal Zone (연안역에서 고파랑과 폭풍해일을 고려한 침수해석)

  • Kim, Do-Sam;Kim, Ji-Min;Lee, Gwang-Ho;Lee, Seong-Dae
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.35-41
    • /
    • 2007
  • In general, coastal damage is mostly occurred by the action of complex factors, like severe water waves. If the maximum storm surge height combines with high tide, severe water waves will overflow coastal structures. Consequently, it can be the cause of lost lives and severe property damage. In this study, using the numerical model, the storm surge was simulated to examine its fluctuation characteristics at the coast in front of Noksan industrial complex, Korea. Moreover, the shallow water wave is estimated by applying wind field, design water level considering storm surge height for typhoon Maemi to SWAN model. Under the condition of shallow water wave, obtained by the SWAN model, the wave overtopping rate for the dike in front of Noksan industrial complex is calculated a hydraulic model test. Finally, based on the calculated wave-overtopping rate, the inundation regime for Noksan industrial complex was predicted. And, numerically predicted inundation regimes and depths are compared with results in a field survey, and the results agree fairly well. Therefore, the inundation modelthis study is a useful tool for predicting inundation regime, due to the coastal flood of severe water wave.

Regional Extension of the Neural Network Model for Storm Surge Prediction Using Cluster Analysis (군집분석을 이용한 국지해일모델 지역확장)

  • Lee, Da-Un;Seo, Jang-Won;Youn, Yong-Hoon
    • Atmosphere
    • /
    • v.16 no.4
    • /
    • pp.259-267
    • /
    • 2006
  • In the present study, the neural network (NN) model with cluster analysis method was developed to predict storm surge in the whole Korean coastal regions with special focuses on the regional extension. The model used in this study is NN model for each cluster (CL-NN) with the cluster analysis. In order to find the optimal clustering of the stations, agglomerative method among hierarchical clustering methods was used. Various stations were clustered each other according to the centroid-linkage criterion and the cluster analysis should stop when the distances between merged groups exceed any criterion. Finally the CL-NN can be constructed for predicting storm surge in the cluster regions. To validate model results, predicted sea level value from CL-NN model was compared with that of conventional harmonic analysis (HA) and of the NN model in each region. The forecast values from NN and CL-NN models show more accuracy with observed data than that of HA. Especially the statistics analysis such as RMSE and correlation coefficient shows little differences between CL-NN and NN model results. These results show that cluster analysis and CL-NN model can be applied in the regional storm surge prediction and developed forecast system.

Storm Surge Analysis using Archimedean Copulas (Copulas에 기반한 우리나라 동해안 폭풍해일 분석)

  • Hwang, Jeongwoo;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.421-421
    • /
    • 2017
  • In order to secure the safety of coastal areas from the continuous storm surge in Korea, it is important to predict the wave movement and properties accurately during the storm event. To improve the accuracy of the storm simulation, and to quantify coastal risks from the storm event, the dependencies between wave height, wave period, and storm duration should be analyzed. In this study, therefore, copulas were used to develop multivariate statistical models of sea storms. A case study of the east coast of Korea was conducted, and the dependencies between wave height, wave period, water level, storm duration and storm interarrival time were investigated using Kendall's tau correlation coefficient. As a result of the study, only wave height, wave period, and storm duration appeared to be correlated.

  • PDF