• Title/Summary/Keyword: Storm sewer

Search Result 121, Processing Time 0.027 seconds

Probability of performance failure of storm sewer according to accumulation of debris (토사 적체에 따른 우수관의 성능불능확률)

  • Kwon, Hyuk-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.5
    • /
    • pp.509-517
    • /
    • 2010
  • Statistical distribution of annual maximum rainfall intensity of 18 cities in Korea was analyzed and applied to the reliability model which can calculate the probability of performance failure of storm sewer. After the analysis, it was found that distribution of annual maximum rainfall intensity of 18 cities in Korea is well matched with Gumbel distribution. Rational equation was used to estimate the load and Manning's equation was used to estimate the capacity in reliability function to calculate the probability of performance failure of storm sewer. Reliability analysis was performed by developed model applying to the real storm sewer. It was found that probability of performance failure is abruptly increased if the diameter is smaller than certain size. Therefore, cleaning the inside of storm sewer to maintain the original diameter can be one of the best ways to reduce the probability of performance failure. In the present study, probability of performance failure according to accumulation of debris in storm sewer was calculated. It was found that increasing the amount of debris seriously decrease the capacity of storm sewer and significantly increase the probability of performance failure.

Probability of Performance Failure and Change of Roughness Coefficient According to Accumulation of Debris in Storm Sewer (토사적체에 따른 우수관의 조도계수 변화와 성능불능확률)

  • Kwon, Hyuk-Jae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.135-141
    • /
    • 2010
  • Reliability model which can calculate the probability of performance failure of storm sewer was developed considering change of roughness coefficient in this study. Roughness coefficient should be re-evaluated due to accumulations of debris in sewer pipe. Therefore, roughness coefficient according to depth of debris in circular sewer pipe was determined for the present study. Reliability analysis was performed with the new roughness coefficient. After the analysis, it was found that capacity of storm sewer can be significantly decreased and probability of performance failure of storm sewer can be significantly increased by increasing the depth of debris in storm sewer. In this study, reliability model was applied for the Daegu and Jeonju using new roughness coefficient which was determined according to accumulation of debris in circular storm sewer. It was observed that if the depth of debris is increased, roughness coefficient is increased simultaneously and probability of performance failure of storm sewer is significantly increased.

Derivation of the Risk-Safety Factor Relation for Optimal Storm Sewer Design in Urban Area (도시지역의 최적 배수관망 설계를 위한 Risk Safety Factor 관계의 설정)

  • Kim, Mun Mo;Lee, Won Hwan;Cho, Won Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.129-134
    • /
    • 1992
  • This paper presents the relation between risk and safety factor for optimal storm sewer design in urban area. For reliability analysis of the storm sewer, uncertainty of the various parameters of constituting equation determining the capacity and load of storm" sewer is considered and risk is determined. In this study, reliability analysis method is applied to Seongsan detention reservoir basin which area is $381,000m^2$ Darcy-Weisbach equation is used for determining capacity of the storm sewer and rational formula is used for determining load. Safety factor representing ratio of the sewer capacity and design flowrate is calculated, and relating with risk. Then risk and safety factor with return period is obtained and it is used for optimal design of storm sewer.

  • PDF

Risk analysis of road cave-in of storm sewer lateral using zoom camera (줌카메라를 활용한 빗물받이 연결관의 도로함몰 리스크 분석)

  • Han, Sangjong;Hwang, Hwankook
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.681-690
    • /
    • 2014
  • It is known that sewer problems are the major causes of road cave-in. The objective of this study is to analyze the risk of road cave-in due to storm sewer laterals. We investigated 174 storm sewer laterals using a zoom camera at O-dong area in Seoul. The causes of road cave-in were classified into five cases: breakage of rigid pipe, deformation of flexible pipe, out of pipeline alignment, changing pipe material or changing pipe diameter, and a poor linkage between lateral and sewer. In addition, all defects were sorted into five grades based on the severity rating at storm sewer laterals. In this study, the most fragile pipe materials were found to be concrete pipe and polyethylene pipe, which recorded 2.3 and 1.69 defect rates. With regard to the causes of road cave-in, deformation of flexible pipe has a large influence on road cave-in at present. On a long-term basis, the two causes, out of pipeline alignment and a poor linkage between lateral and sewer, could have more influence on road cave-in.

Safety Analysis of Storm Sewer Using Probability of Failure and Multiple Failure Mode (파괴확률과 다중파괴유형을 이용한 우수관의 안전성 분석)

  • Kwon, Hyuk-Jae;Lee, Cheol-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.11
    • /
    • pp.967-976
    • /
    • 2010
  • AFDA (Approximate Full Distribution Approach) model of FORM (First-Order Reliability Model) which can quantitatively calculate the probability that storm sewer reach to performance limit state was developed in this study. It was defined as a failure if amount of inflow exceed the capacity of storm sewer. Manning's equation and rational equation were used to determine the capacity and inflow of reliability function. Furthermore, statistical characteristics and distribution for the random variables were analyzed as a reliability analysis. It was found that the statistical distribution for annual maximum rainfall intensity of 10 cities in Korea is matched well with Gumbel distribution. Reliability model developed in this study was applied to Y shaped storm sewer system to calculate the probability that storm sewer may exceed the performance limit state. Probability of failure according to diameter was calculated using Manning's equation. Especially, probability of failure of storm sewer in Mungyeong and Daejeon was calculated using rainfall intensity of 50-year return period. It was found that probability of failure can be significantly increased if diameter is decreased below the original diameter. Therefore, cleaning the debris in sewer pipes to maintain the original pipe diameter should be one of the best ways to reduce the probability of failure of storm sewer. In sewer system, two sewer pipes can flow into one sewer pipe. For this case, probability of system failure was calculated using multiple failure mode. Reliability model developed in this study can be applied to design, maintenance, management, and control of storm sewer system.

Comparative Analysis of the Storm Sewer Expansion Methodology and Underground Rainwater Storage Tanks for Urban Flood Control (기존 도시의 홍수저감을 위한 우수관거 배수용량 증대 및 지하 빗물저류조 설치효과 비교 분석)

  • Lee, Ho Yeol;Seo, Gyu Tae;Lee, Taek Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.754-761
    • /
    • 2013
  • Urban floods are usually caused by the lack of drainage capacity. Hence, sewer capacity expansion methodology by replacing small pipes with bigger ones is primarily applied as a flood control measure. However, this approach is often unreasonable because of the costs and time involved. Thus, the installation of underground rainwater storage tanks with the two advantages of flood control and water conservation is proposed. This study compared the effectiveness of flood control by both the sewer expansion methodology and rainwater storage tanks using the Storm Water Management Model. Three cases were simulated in this study. The first case analyzed flood reduction by the storm sewer expansion methodology. The simulation results indicate that the overflow volume from manholes was reduced by 49% with this methodology. The second case analyzed flood reduction by installation of rainwater storage tanks. The simulation results indicate that the overflow volume was reduced by 62%. However, these two cases could not prevent urban floods completely. Hence, the third case analyzed the joint application of the storm sewer expansion methodology and rainwater storage tanks. In this simulation, flooding did not occur. Consequently, the results of this study clearly show that underground rainwater storage tanks are more effective for flood control than capacity expansion of storm sewer. Furthermore, the joint application of these two flood control measures is more effective than their separate application.

Effect of infiltration/inflow by rainfall for sewerage facilities in the area with partially separate sewer system (불완전 분류식 하수처리구역의 강우에 의한 하수도시설의 침입수/유입수 영향 분석)

  • Shin, Jungsub;Han, Sangwon;Yook, Junsu;Lee, Chungu;Kang, Seonhong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.3
    • /
    • pp.177-190
    • /
    • 2019
  • The purpose of this study was to analyze the effects of sewerage facilities through I/I analysis by rainfall by selecting areas where storm overflow diverging chamber is remained due to the non-maintenance drainage equipment when the sewerage system was reconstructed as a separate sewer system. Research has shown that wet weather flow(WWF) increased from 106.2% to 154.8% compared to dry weather flow(DWF) in intercepting sewers, and that the WWF increased from 122.4% to 257.6% in comparison to DWF in storm overflow diverging chamber. As a result, owing to storm overflow diverging chamber of partially separate sewer system with untreated tributary of sewage treatment plant, rainfall-derived infiltration/inflow(RDII) has been analyzed 2.7 times higher than the areas without storm overflow diverging chamber. Meanwhile, infiltration quantity of this study area was relatively higher than that of other study areas. Therefore, it is necessary to reduce infiltration quantity through sewer pipe maintenance nearby river. Drainage equipment maintenance should be performed not to operate storm overflow diverging chamber in order to handle the appropriate sewage treatment plant capacity for rainfall because it is also expected that RDII due to rain will occur after maintenance. In conclusion, it is necessary to recognize aRDII(allowance of rainfall-derived infiltration/inflow) and to be reflected it on sewage treatment plant capacity because aRDII can occur even after maintenance to the complete separate sewer system.

The application of reliability analysis for the design of storm sewer (우수관의 설계를 위한 신뢰성해석기법의 적용)

  • Kwon, Hyuk Jaea;Lee, Kyung Je
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.10
    • /
    • pp.887-893
    • /
    • 2018
  • In this study, the optimum design technology is suggested by using reliability analysis method. Nowadays, urban flood inundation is easily occurred because of local heavy rain. Traditional deterministic design method for storm sewer may underestimate the size of pipe. Therefore, stochastic method for the storm sewer design is necessary to solve this problem. In the present study, reliability model using FORM (First Order Reliability Method) was developed for the storm sewer. Developed model was applied to the real storm sewers of 5 different areas. Probability of exceeding capacity has been calculated and construction costs according to diameter have been compared. Probability of exceeding capacity of storm sewers of 5 areas have been calculated after estimating the return period of rainfall intensity.

Effect of Rainfall Design Frequency Determination on the Design of Storm Sewer System (강우 확률년수의 설정이 우수관거 설계에 미치는 영향)

  • Lee, Cheol-kyu;Hyun, In-hwan;Dockko, Seok;Kim, Hyung-jun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.647-654
    • /
    • 2005
  • Recently, the economic losses caused by inundation are increasing due to the urbanization and industrialization, i.e., intensive land utilization and concentration of population and properties. It is regarded that the role of the storm sewer systems in urban areas becomes more important as one of the effective countermeasures for reducing the inundation losses. In this study, the effects of rainfall design frequency enhancement on the construction cost of the storm sewer systems were analyzed by increasing the design frequency from the present design frequency of the sewer systems, which is 5~10 years, to 15 years, 20 years and 30 years. The change rate functions of the design discharge and construction cost based on the various design frequencies were derived by regression analysis. According to the analysis, change the rate of design discharge at 15, 20, 30 years rainfall design frequencies were increased by 10%, 17.1%, and 27.2%, respectively, when compared to that at 10 year frequency. Furthermore, it was found that by increasing the design frequency from 10 years to 15 years, 20 years and 30 years, the construction costs were increased by 5.0%, 8.0% and 12.4%, respectively. Finally, their reliabilities need to be tested by applying the rate functions to the real storm sewer districts.

Determination of Interception Flow by Pollution Load Budget Analysis in Combined Sewer Watershed (II) - Establishment of Intercepting Capacity and Reduction Goal of Overflow Pollution Load - (오염부하 물질수지 분석을 통한 합류식 하수관거 적정 차집용량 결정(II) - 차집용량과 월류오염부하 삭감목표 설정 -)

  • Lee, Doojin;Shin, EungBai
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.557-564
    • /
    • 2005
  • The objective of this study is to evaluate a criteria of intercepting capacity and a reduction goal of overflow pollution load in combined sewer system. In the current criteria of intercepting capacity in the domestic sewage facility standard, it is known that three times of peak sewage (Q) in dry period or runoff flow by 2mm/hr is not appropriate since the intercepted flow is estimated by runoff and show different result even in the same watershed. Though a reduction goal of overflow pollution load can be determined from 1) same level of storm-water runoff pollution load in separated storm sewer, 2) less than 5% sewage load in dry weather period, by the domestic sewage facility standard, the simulated results from storm-water model show large differences between two criteria. While it is predicted that sewage pollution load standard three time larger than separated storm sewer standard in high population density and urbanized area, it is shown that separate storm sewer standard larger than sewage pollution load standard in middle population density and developing area. Accordingly, it is proposed that more reasonable intercepting flow and reduction goal of overflows pollution load should be established to minimize discharging pollution load in combined sewer systems. For the purpose, a resonable standard has to be amended by pollution load balance considering the characteristics of a watershed for generation, collection, treatment, and discharging flow.