• Title/Summary/Keyword: Storm Track

Search Result 36, Processing Time 0.028 seconds

Assessment of Large Scale Climate Pattern of Extreme Rainfall in Korea (우리나라 극치강수량 발생시 대규모 기상장 특성 평가)

  • Kwon, Hyun-Han;Kim, Min-Ji;Kim, Jang-Kyung;Kim, Un-Gi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.360-360
    • /
    • 2011
  • 우리나라의 극치강수량 발생 특성은 6~8월 사이에 몬순시스템에 의해 영향을 많이 받는다. 이러한 동아시아 몬순시스템은 대규모 기상학적 거동으로서 우리나라의 국지적 강수발생 특성과 매우 큰 연관성을 가지고 있다. 우리나라의 극치강수량 발생 시에 나타나는 기상학적 특징을 진단하는 과정은 수문 기상학적으로 극치강수량을 예측할 수 있는 기본 토대를 제공할 수 있다. 이러한 점에서 본 연구에서는 우리나라에 발생한 극치강수량을 순위별로 추출하고 각 순위별로 극치강수량 발생시점을 중심으로 5일 이전의 기상변량을 NOAA 재해석(reanalysis) 자료로부터 추출하고 이를 합성시켜 기상특성을 평가하였다. 극치강수량의 기상학적 거동을 평가하기 위한 방법은 다음과 같다. 첫째, 기상변량으로는 Sea Level Pressure, Wind Vector, Geopotential Height 등을 추출한다. 둘째, 이들 기상자료로부터 대규모 강우장만을 추출하기 위해서 기준값(threshold)을 가지고 특정량 이상의 Storm Track만을 추출한다. 셋째, 이들 Storm Track들을 분류하여 범주화 시킨다. 넷째, 범주화된 Storm Track 별로 강수량 분포, 강수지속시간 등에 대한 확률 분포를 유도한다. 또한 이들 Storm Track에 패턴인식 기법을 적용하여 Storm Track의 이동경로를 추정할 수 있는 알고리즘을 개발하고자 한다.

  • PDF

Numerical Simulation of Storm Surge and Wave due to Typhoon Bolaven of 2012 (2012년 태풍 볼라벤에 대한 폭풍해일과 파랑 수치모의)

  • Kim, Gun Hyeong;Ryu, Kyong Ho;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.4
    • /
    • pp.273-283
    • /
    • 2020
  • Numerical simulations of the storm surge and waves induced by the Typhoon Bolaven incident on the west sea of Korea in 2012 are performed using the JMA-MSM weather field provided by the Japan Meteorological Agency, and the calculated surge heights are compared with the time history observed at harbours along the various coasts of Korea. For the waves occurring coincidentally with the storm surges the calculated significant wave heights are compared with the data measured using the wave buoys operated by the Korea Hydrographic and Oceanographic Agency and the Korea Meteorological Administration. Additional simulations are also performed based on the pressure and wind fields obtained using the best track information provided by the Joint Typhoon Warning Center, and the calculated results are compared and analyzed. The waves and storm surges calculated using JMA-MSM wether field agree well with the observations because of the better reflection of the topography and the pre-background weather field. On the other hand, the calculated results based on the weather fields produced using the JTWC best track information show some limitations of the general trend of the variations of wave and surge heights. Based on the results of this study it is found that the reliable weather fields are essential for the accurate simulation of storm surges and waves.

A Study on the Improvement of Wave and Storm Surge Predictions Using a Forecasting Model and Parametric Model: a Case Study on Typhoon Chaba (예측 모델 및 파라미터 모델을 이용한 파랑 및 폭풍해일 예측 개선방안 연구: 태풍 차바 사례)

  • Jin-Hee Yuk;Minsu Joh
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.4
    • /
    • pp.67-74
    • /
    • 2023
  • High waves and storm surges due to tropical cyclones cause great damage in coastal areas; therefore, accurately predicting storm surges and high waves before a typhoon strike is crucial. Meteorological forcing is an important factor for predicting these catastrophic events. This study presents an improved methodology for determining accurate meteorological forcing. Typhoon Chaba, which caused serious damage to the south coast of South Korea in 2016, was selected as a case study. In this study, symmetric and asymmetric parametric vortex models based on the typhoon track forecasted by the Model for Prediction Across Scales (MPAS) were used to create meteorological forcing and were compared with those models based on the best track. The meteorological fields were also created by blending the meteorological field from the symmetric / asymmetric parametric vortex models based on the MPAS-forecasted typhoon track and the meteorological field generated by the forecasting model (MPAS). This meteorological forcing data was then used given to two-way coupled tide-surge-wave models: Advanced CIRCulation (ADCIRC) and Simulating Waves Nearshore (SWAN). The modeled storm surges and waves correlated well with the observations and were comparable to those predicted using the best track. Based on our analysis, we propose using the parametric model with the MPAS-forecasted track, the meteorological field from the same forecasting model, and blending them to improve storm surge and wave prediction.

Numerical Simulation of Storm Surge and Wave due to Typhoon Kong-Rey of 2018 (2018년 태풍 콩레이에 대한 폭풍해일과 파랑 수치모의)

  • Kwon, Kab Keun;Jho, Myeong Hwan;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.4
    • /
    • pp.252-261
    • /
    • 2020
  • Numerical simulations of the storm surge and waves induced by the Typhoon Kong-Rey incident on the south coast of Korea in 2018 are conducted using the JMA-MSM weather field provided by the Japan Meteorological Agency, and the calculated surge heights are compared with the time history observed at harbours along the south-east coast. For the waves occurring coincidentally with the storm surges the calculated significant wave heights are compared with the data measured using the wave buoys operated by the KHOA (Korea Hydrographic and Oceanographic Agency) and the KMA (Korea Meteorological Administration), and the data observed at AWAC stations of the KIOST (Korea Institute of Ocean Science and Technology). Additional simulations are also performed based on the pressure and wind fields obtained using the best track information provided by the JTWC (Joint Typhoon Warning Center) of the United States, and the results are compared and analyzed. Based on the results of this study it is found that the reliable weather fields are essential for the accurate simulation of storm surges and waves.

Analysis of Typhoon Storm Occurrence and Runoff Characteristics by Typhoon Tracks in Nakdong River Basin (낙동강유역의 태풍경로별 호우발생특성 및 유출특성 분석)

  • 한승섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.64-73
    • /
    • 1996
  • When typhoon occurs, the meteorological conditions get worse and can cause a large damage from storm and flood . This damage, however, can be minimized if a precise analysis of the runoff characteristics by typhoon tracks is used in the flood contorl This paper aims at the analysis of storm occurrence and runoff characteristics by typhoon tracks in Nakdong river basin. Therefore, the data of 14 typhoons which invaded Nakdong river basin during the period from 1975 to 1991 were collected, analyzed, and studied. The major results of this study are as followings; 1) The frequency of the typhoon occurrence here in Korea was affected by the storms three times a year on the average. The highest-recorded frequency was during the months of July to September. 2) The survey of the track characteristics depending on the forms of the storm in the Nakdong river basin showed that typhoon storm advanced from the south of the basin to the north, while the frontal type storm was most likely to advanced from the west to the north. 3) Typhoon tracks are classified into three categories, 6 predictors with high correlation coefficient are finally selected, and stepwise multiple regression method are used to establish typhoon strom forecasting models. 4) The riview on the directions of progress of the storm made it clear that the storm moving downstream from upstream of the basin could develop into peak discharge for ca short time and lead to more flood damage than in any other direction.

  • PDF

A Case Study on the Preliminary Study for Disaster Prevention of Storm Surge: Arrangement of Structures (폭풍해일 방재를 위한 사례적용을 통한 선행연구: 구조물 배치)

  • Young Hyun, Park;Woo-Sun, Park
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.335-345
    • /
    • 2022
  • Climate change is accelerating worldwide due to the recent rise in global temperature, and the intensity of typhoons is increasing due to the rise in seawater temperature around the Korean Peninsula. An increase in typhoon intensity is expected to increase not only wind damage, but also coastal damage caused by storm surge. Accordingly, in this study, a study of the method of reducing storm surges was conducted for the purpose of disaster prevention in order to respond to the increasing damage from storm surges. Storm surges caused by typhoons can be expected to be affected by structures located on the track of typhoon, and the effects of storm surges were studied by the eastern coast and the barrier island along the coast of the Gulf of Mexico in the United States. This study focused on this aspect and conducted related research, considering that storm surges in the southern coastal area of the Korean Peninsula could be directly or indirectly affected by Jeju Island, which is located on the track of typhoon. In order to analyze the impact of Jeju Island on storm surges, simulations were performed in various situations using a numerical analysis model. The results of using Jeju Island are thought to be able to be used to study new disaster prevention structures that respond to super typhoons.

Typhoon Surge Simulation on the West Coast Incorporating Asymmetric Vortex and Wave Model on a Fine Finite Element Grid (상세유한요소격자에서 비대칭 경도풍과 파랑모형이 고려된 서해안의 태풍해일모의)

  • Suh, Seung-Won;Kim, Hyeon-Jeong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.3
    • /
    • pp.166-178
    • /
    • 2012
  • In order to simulate storm surge for the west coast, complex physics of asymmetrical typhoon wind vortex, tide and wave are simultaneously incorporated on a fine finite element mesh extended to the North Western Pacific sea. Asymmetrical vortex based on maximum wind radii for each quadrant by JTWC's best tracks are input in pADCIRC and wave stress is accounted by dynamic coupling with unSWAN. Computations performed on parallel clusters. In hindcasting simulation of typhoon Kompasu(1007), model results of wave characteristic are very close with the observed data at Ieo island, and sea surface records at major tidal stations are reproduced with satisfaction when typhoon is approaching to the coast. It is obvious that increasing of local storm surges can be found by introducing asymmetrical vortex. Thus this approach can be satisfactorily applied in coastal hazard management against to storm surge inundation on low level area and major harbor facilities.

Evaluation of shelter performance following the 2013 Moore tornado

  • Scott, Pataya L.;Liang, Daan
    • Wind and Structures
    • /
    • v.21 no.4
    • /
    • pp.369-381
    • /
    • 2015
  • Moore, Oklahoma was hit by an EF5 tornado on May 20, 2013. The tornado track slightly overlapped with two previous tornadoes that occurred on May 3, 1999 and May 8, 2003 respectively. A research team from Texas Tech University was deployed to investigate the performance of shelters based on observation of their post-storm conditions. Sixty-one shelter units were further documented by size, manufacturer, and date of installation if available. Then they were crossed referenced with the external databases to determine their compliance with design and construction standards by the International Code Council/National Storm Shelter Association and/or criteria from the Federal Emergency Management Agency publications. Wind intensity was estimated for each shelter location using the EF scale. Results showed a marked increase in the number of exterior underground shelters as well as the popularity of a new in-garage floor underground shelter design. All of the units provided protection for their occupants with no loss of life reported. However, one older shelter had a door failure due to neglect of maintenance. Recommendations were made to improve future performance of shelters.

Analysis of Reliability of Weather Fields for Typhoon Maemi (0314) (태풍 기상장의 신뢰도 분석: 태풍 매미(0314))

  • Yoon, Sung Bum;Jeong, Weon Mu;Jho, Myeong Hwan;Ryu, Kyong Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.351-362
    • /
    • 2020
  • Numerical simulations of the storm surge and waves induced by the Typhoon Maemi incident on the south sea of Korea in 2003 are performed using the JMA-MSM forecast weather field, NCEP-CFSR reanalysis weather field, ECMWF-ERA5 reanalysis weather field, and the pressure and wind fields obtained using the best track information provided by JTWC. The calculated surge heights are compared with the time history observed at harbours along the coasts of Korea. For the waves occurring coincidentally with the storm surges the calculated significant wave heights are compared with the measured data. Based on the comparison of surge and wave heights the assessment of the reliability of various weather fields is performed. As a result the JMA-MSM weather fields gives the highest reliability, and the weather field obtained using JTWC best track information gives also relatively good agreement. The ECMWF-ERA5 gives in general surge and wave heights weaker than the measured. The reliability of NCEP-CFSR turns out to be the worst for this special case of Typhoon Maemi. Based on the results of this study it is found that the reliable weather fields are essential for the accurate simulation of storm surges and waves.