• Title/Summary/Keyword: Storm Event

Search Result 249, Processing Time 0.053 seconds

Study on Construction of Flood Hazard Information Support System based on Scenario (시나리오 기반 홍수위험정보지원시스템 구축 방안 연구)

  • Goo, Sin-Hoi;Jin, Kyeong-Hyeok;Cheong, Tae-Sung
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.389-393
    • /
    • 2010
  • The Objective of this study was to develop a system for visualizing inundation area by using 1-D numerical model analyzing damage information such as inundation area, facilities, land usages, population, building, loads. In this study, we have reviewed hydraulic models to select a flood model for simulation of discharges, water depths and velocities. The study area is Namhan River from Youngwol to Paldang Dam which had a flood damage on upper and below regions of Chungju Dam by a storm event in 2006. At the first, we developed the DB system base on GIS thematic map, ortho images, cadastral maps to analyze flood damages and support decisions making. Changing the boundary conditions such as discharge at the gauging stations, flood simulations were performed and then damages were extracted from the databases information support system based on 1-D numerical hydraulic model, it is expected to be able to analyze flood damages and support a decision making for reduce flood relate damages. In the future, the system developed in this study could be applied for flood forecasting system of small scaled streams.

  • PDF

A Study on Development of Program for Estimating Reservoirs Outflow using Genetic Algorithm (유전자알고리즘을 이용한 저수지(貯水池)의 방류량(放流量) 추정(推定) 프로그램 개발 연구)

  • Ahn, Sang-Dae;Kim, Won-Il;Ahn, Byung-Chan;Ahn, Won-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.153-159
    • /
    • 2009
  • In order to estimate release water from reservoirs located on ungaged watersheds, an algorithm was suggested based on hydrologic reservoir routing and real time calibrating watershed parameters. A prototype - simple computer program was developed to implement the algorithm with Genetic Algorithm technic. The program was applied to a mid-size reservoir and its ungauged watershed area using observed rainfall data, spillway gates operation data and reservoir water stage time series data under a existing storm event. The result shows that the algorithm and the prototype would be useful to simulate released water from reservoirs.

A Study on Establishing Optimum Scale of Sediment Basin for Preventing the Outflow of Sediment - In the case of Buju Mountain in Mokpo city, Korea - (토사유출 방지용 침사지 적정규모 설정방안에 관한 연구 -목포시 부주산을 사례로-)

  • 우창호;황국웅
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.4
    • /
    • pp.59-69
    • /
    • 1999
  • This study examines the existing theories related to detention basin and embodies the calculation process of sediment basin. It investigated the scale of sediment basin by actual measurement at Buju Mountain, Mokpo city which causes the environmental problems like erosion and outflow of sediment due to the excessive development, finds the problems of existing sediment basin by applying and analyzing the physical factors which affect the execution of sediment basin using GIS as the method establishing the scale of sediment basin embodied in this study and then suggests the oteimum scale. Comparing the surface area of the existing sediment basin and of the required one, all of the surface areas of the existing sediment basins were smaller than those of the required one. Therefore, it can be expected that the trap efficient of sediment will be declined. The required one. Therefore, it can be expected that the trap efficient of sediment will be declined. The required minimum depth was fully satisfied, but it is analyzed that the volume of sediment basin will affect the neighboring environment because it can not accomodate the inflow discharge volume except sediment basin C. It is consistent with the actual situation which causes a serious environmental problem due to the overflow of sediment basin during the heavy storm event except sediment basin C and also it verifies the validity of calculation process of establishing optimum sediment basin suggested in this study.

  • PDF

Soil Erosion Reduction Plan for Watershed with Sloping Fields of Highland Agriculture by Using GEOWEPP Model (GEOWEPP 모형을 이용한 고랭지 경사지밭 소유역의 토양유실 저감방안)

  • Moon, Jong-Pil;Kim, Tai-Cheol;Lee, Sung-Hyoun;Kwon, Jin-Kyung;Lee, Su-Jang;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.135-144
    • /
    • 2010
  • This study was performed to suggest a soil loss reduction skill through estimating soil erosion from a small watershed including each type of sloping agriland by using GEOWEPP model. Experimental watershed at Gangwon province was selected for very typical sloping fields of highland agriculture in Alpine area. Runoff discharge and sediment load, hourly rainfall amount occurred during storm event were gauged, and weather data were obtained from Daegwallyeong meteorological station. The results of GEOWEPP model estimation showed that relative error values for total runoff discharge and sediment load were 3 %, -14.5 % respectively. Based on the result, soil erosion and waterway path map for each hillslope were made to select target hillslope. Several hillslopes of severe soil erosion were analyezed and then the optimal vegetative filter strip construction width and waterway path to plant grass were decided by using GEOWEPP Model.

A Study on Management Functions of Intelligent Reflectors Environment (지능형 반사경의 관리 기능 연구)

  • Kang-Hyun Nam
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.433-440
    • /
    • 2023
  • When the reflector is hit by a vehicle or returned by a storm, an event is generated by the impact sensor and a trigger is operated. The trigger processing algorithm of this paper compares the X, Y, and Z values of the gyro sensor with the registered values and proposes to drive them to the original values by the operation of the 3-axis driving motor. And by recognizing the vehicle license plate, if the vehicle is stolen or a social problem, information is provided to the police operation network. When the reflector is stolen or moved, it has a registered GPS value, so it operates the theft monitoring function to process it.

Estimation of storm events frequency analysis using copula function (Copula 함수를 이용한 호우사상의 빈도해석 산정)

  • An, Heejin;Lee, Moonyoung;Kim, Si Yeon;Jeon, Seol;Ahn, Youngmin;Jung, Donghwa;Park, Daeryong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.200-200
    • /
    • 2022
  • 본 연구에서는 총 강우량과 강우강도을 고려한 이변수 분석으로 연최대 호우사상을 선별하고, 두 변수를 Copula 함수로 결합하여 최적의 모델조합을 찾는 확률호우사상 산정 방법론을 제시하였다. 국내 69개 관측소의 2020년까지의 관측 자료를 대상으로 1mm 이하의 강우는 제거한 뒤, IETD(Inter-Event Time Definition) 12시간을 기준으로 강우자료를 독립적인 호우사상으로 분리하였다. 호우사상의 여러 특성 중 양의 상관관계를 갖는 총 강우량과 강우강도를 변수로 선택해 이변수 지수분포에 대입하였고, 각 지점의 연최대 호우사상 시계열을 생성하였다. 2변수 지수분포의 매개변수는 전체 기간과 연도별로 나누어 추정해 본 결과 연도별 변동성이 큰 것을 확인해 연도별 추정 방식을 선택하였다. 연최대 강우사상 시계열의 총 강우량과 강우강도는 극한 강우에 적용하는 확률분포형 중 Lognarmal, Gamma, Gumbel, GEV(Generalized Extreme Value), GPD(Generalized Pareto Distribution) 5가지를 사용하여 각각 CDF(Cumulative distribution Function) 값을 추정하였다. 계산된 CDF 값은 3가지 Copula 모형으로 결합해 joint CDF 값을 산출하였다. 총 75개의 모델조합 중 최적 모델을 찾기 위해 CVM(Cramer-von-Mises) 적합도 검정을 시행하였다. CVM의 통계량 Sn 값이 가장 작은 모델조합을 해당 지점의 최적 모델조합으로 선정하였다.

  • PDF

Development of a Flood Disaster Evacuation Map Using Two-dimensional Flood Analysis and BIM Technology (2차원 침수해석과 BIM 기술을 활용한 홍수재난 대피지도 작성)

  • Jeong, Changsam
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.2
    • /
    • pp.53-63
    • /
    • 2020
  • In this study, the two-dimensional flow analysis model Hydro_AS-2D model was used to simulate the situation of flooding in Seongsangu and Uichang-gu in Changwon in the event of rising sea levels and extreme flooding, and the results were expressed on three-dimensional topography and the optimal evacuation path was derived using BIM technology. Climate change significantly affects two factors in terms of flood damage: rising sea levels and increasing extreme rainfall ideas. The rise in sea level itself can not only have the effect of flooding coastal areas and causing flooding, but it also raises the base flood level of the stream, causing the rise of the flood level throughout the stream. In this study, the rise of sea level by climate change, the rise of sea level by storm tidal wave by typhoon, and the extreme rainfall by typhoon were set as simulated conditions. The three-dimensional spatial information of the entire basin was constructed using the information of topographical space in Changwon and the information of the river crossing in the basic plan for river refurbishment. Using BIM technology, the target area was constructed as a three-dimensional urban information model that had information such as the building's height and location of the shelter on top of the three-dimensional topographical information, and the results of the numerical model were expressed on this model and used for analysis for evacuation planning. In the event of flooding, the escape route is determined by an algorithm that sets the path to the shelter according to changes in the inundation range over time, and the set path is expressed on intuitive three-dimensional spatial information and provided to the user.

Application of a Penalty Function to Improve Performance of an Automatic Calibration for a Watershed Runoff Event Simulation Model (홍수유출 모형 자동 보정의 벌칙함수를 이용한 기능 향상 연구)

  • Kang, Taeuk;Lee, Sangho
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.12
    • /
    • pp.1213-1226
    • /
    • 2012
  • Evolutionary algorithms, which are frequently used in an automatic calibration of watershed runoff simulation models, are unconstrained optimization algorithms. An additional method is required to impose constraints on those algorithms. The purpose of the study is to modify the SCE-UA (shuffled complex evolution-University of Arizona) to impose constraints by a penalty function and to improve performance of the automatic calibration module of the SWMM (storm water management model) linked with the SCE-UA. As indicators related to peak flow are important in watershed runoff event simulation, error of peak flow and error of peak flow occurrence time are selected to set up constraints. The automatic calibration module including the constraints was applied to the Milyang Dam Basin and the Guro 1 Pumping Station Basin. The automatic calibration results were compared with the results calibrated by an automatic calibration without the constraints. Error of peak flow and error of peak flow occurrence time were greatly improved and the original objective function value is not highly violated in the automatic calibration including the constraints. The automatic calibration model with constraints was also verified, and the results was excellent. In conclusion, the performance of the automatic calibration module for watershed runoff event simulation was improved by application of the penalty function to impose constraints.

Runoff Characteristics of Non-Point Source Pollution in Lower Reaches of Livestock Area (축사 주변지역 비점오염물질의 유출특성)

  • Hwang, Jeong-Suk;Park, Young-Ki;Won, Chan-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.8
    • /
    • pp.557-565
    • /
    • 2012
  • In this research, it was analyzed that the effect of the non-point source pollution that occurs in the lower reaches of the livestock area. The analysis on the hydro- and polluto-graphs showed that the concentration of pollution gradually increased as the flow rate increased and, after reaching the peak flow rate, the flow rate dropped drastically. For Event Mean Concentration (EMC), in the lower reaches of livestock area, TSS EMC was 146.80~424.95 mg/L, COD EMC 11.64~55.66 mg/L, BOD EMC 6.66~49.88 mg/L, T-N EMC 7.650~43.825 mg/L and T-P EMC 0.711~3.855 mg/L. According to the results of the analysis on the correlations between pollutants, TSS and BOD, COD, T-N and T-P had correlations at a 0.53~0.95 confidence level. In addition, according to the result of the analysis on the correlations between EMC (mg/L) and storm runoff ($m^3$), the correlation was well explained by a Cubic regression. In addition, among the determination coefficients, TSS and T-N were relatively high, at 0.767~0.835 and 0.773~0.901 respectively, which indicates that EMC goes up as the storm runoff increases. Therefore, it is expected that EMC can be forecasted according to the amount of runoff ($m^3$). The results of this research will be a practical information for the assessment of the non-point source pollution that occurs in the lower reaches of the livestock area.

Squall: A Real-time Big Data Processing Framework based on TMO Model for Real-time Events and Micro-batch Processing (Squall: 실시간 이벤트와 마이크로-배치의 동시 처리 지원을 위한 TMO 모델 기반의 실시간 빅데이터 처리 프레임워크)

  • Son, Jae Gi;Kim, Jung Guk
    • Journal of KIISE
    • /
    • v.44 no.1
    • /
    • pp.84-94
    • /
    • 2017
  • Recently, the importance of velocity, one of the characteristics of big data (5V: Volume, Variety, Velocity, Veracity, and Value), has been emphasized in the data processing, which has led to several studies on the real-time stream processing, a technology for quick and accurate processing and analyses of big data. In this paper, we propose a Squall framework using Time-triggered Message-triggered Object (TMO) technology, a model that is widely used for processing real-time big data. Moreover, we provide a description of Squall framework and its operations under a single node. TMO is an object model that supports the non-regular real-time processing method for certain conditions as well as regular periodic processing for certain amount of time. A Squall framework can support the real-time event stream of big data and micro-batch processing with outstanding performances, as compared to Apache storm and Spark Streaming. However, additional development for processing real-time stream under multiple nodes that is common under most frameworks is needed. In conclusion, the advantages of a TMO model can overcome the drawbacks of Apache storm or Spark Streaming in the processing of real-time big data. The TMO model has potential as a useful model in real-time big data processing.