• Title/Summary/Keyword: Store Management System

Search Result 544, Processing Time 0.024 seconds

A Study on the establishment of VOC system in compliance with the shift in customer trend (소비자트렌드 변화에 따른 VOC시스템 구축에 관한 연구)

  • Lee, Soo-Yeul;Kim, Young-Ei
    • Journal of Distribution Science
    • /
    • v.7 no.2
    • /
    • pp.89-119
    • /
    • 2009
  • The purpose of this research is showing an appropriate way of maximizing customer service and establishing VOC system by analyzing different voices from complaining customers as well as loyal customers. This research is also aimed at figuring out how companies can implement effective service marketing methods in the field complying with customers' needs and how they can survive in the competition. The range of research is confined to 5 marketing companies and their web-sites on which customers can get logged and directly post their claims. These web-sites showed how those 5 companies cope with customer claims. A questionnaire research was made in A's store to evaluate customer satisfaction. These are conclusions drawn by this research. First, prompt reactions of sincerity to customers' claims contribute to building favorable corporate images. Second, the preference to VOC channels varies with age and sex. Marketers should implement respectively different channels for customers under age 30 and those over age 40. Women have a tendency to prefer instant phone conversations and want to have their claims well listened to. Third, a series of shift in customer trend drives companies into establishing their own interactive VOC systems based on customers' preferences. Customer-oriented management has become a key factor for survival in recent intensely competitive market situation, as the web-based e-commerce market has been rapidly growing accompanied with a dramatic advance of network marketing methods. This research suggests some practical methods to establish a customer-oriented VOC system that can be easily adopted in the field.

  • PDF

An Online Review Mining Approach to a Recommendation System (고객 온라인 구매후기를 활용한 추천시스템 개발 및 적용)

  • Cho, Seung-Yean;Choi, Jee-Eun;Lee, Kyu-Hyun;Kim, Hee-Woong
    • Information Systems Review
    • /
    • v.17 no.3
    • /
    • pp.95-111
    • /
    • 2015
  • The recommendation system automatically provides the predicted items which are expected to be purchased by analyzing the previous customer behaviors. This recommendation system has been applied to many e-commerce businesses, and it is generating positive effects on user convenience as well as the company's revenue. However, there are several limitations of the existing recommendation systems. They do not reflect specific criteria for evaluating products or the factors that affect customer buying decisions. Thus, our research proposes a collaborative recommendation model algorithm that utilizes each customer's online product reviews. This study deploys topic modeling method for customer opinion mining. Also, it adopts a kernel-based machine learning concept by selecting kernels explaining individual similarities in accordance with customers' purchase history and online reviews. Our study further applies a multiple kernel learning algorithm to integrate the kernelsinto a combined model for predicting the product ratings, and it verifies its validity with a data set (including purchased item, product rating, and online review) of BestBuy, an online consumer electronics store. This study theoretically implicates by suggesting a new method for the online recommendation system, i.e., a collaborative recommendation method using topic modeling and kernel-based learning.

A Study on Ontology and Topic Modeling-based Multi-dimensional Knowledge Map Services (온톨로지와 토픽모델링 기반 다차원 연계 지식맵 서비스 연구)

  • Jeong, Hanjo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.79-92
    • /
    • 2015
  • Knowledge map is widely used to represent knowledge in many domains. This paper presents a method of integrating the national R&D data and assists of users to navigate the integrated data via using a knowledge map service. The knowledge map service is built by using a lightweight ontology and a topic modeling method. The national R&D data is integrated with the research project as its center, i.e., the other R&D data such as research papers, patents, and reports are connected with the research project as its outputs. The lightweight ontology is used to represent the simple relationships between the integrated data such as project-outputs relationships, document-author relationships, and document-topic relationships. Knowledge map enables us to infer further relationships such as co-author and co-topic relationships. To extract the relationships between the integrated data, a Relational Data-to-Triples transformer is implemented. Also, a topic modeling approach is introduced to extract the document-topic relationships. A triple store is used to manage and process the ontology data while preserving the network characteristics of knowledge map service. Knowledge map can be divided into two types: one is a knowledge map used in the area of knowledge management to store, manage and process the organizations' data as knowledge, the other is a knowledge map for analyzing and representing knowledge extracted from the science & technology documents. This research focuses on the latter one. In this research, a knowledge map service is introduced for integrating the national R&D data obtained from National Digital Science Library (NDSL) and National Science & Technology Information Service (NTIS), which are two major repository and service of national R&D data servicing in Korea. A lightweight ontology is used to design and build a knowledge map. Using the lightweight ontology enables us to represent and process knowledge as a simple network and it fits in with the knowledge navigation and visualization characteristics of the knowledge map. The lightweight ontology is used to represent the entities and their relationships in the knowledge maps, and an ontology repository is created to store and process the ontology. In the ontologies, researchers are implicitly connected by the national R&D data as the author relationships and the performer relationships. A knowledge map for displaying researchers' network is created, and the researchers' network is created by the co-authoring relationships of the national R&D documents and the co-participation relationships of the national R&D projects. To sum up, a knowledge map-service system based on topic modeling and ontology is introduced for processing knowledge about the national R&D data such as research projects, papers, patent, project reports, and Global Trends Briefing (GTB) data. The system has goals 1) to integrate the national R&D data obtained from NDSL and NTIS, 2) to provide a semantic & topic based information search on the integrated data, and 3) to provide a knowledge map services based on the semantic analysis and knowledge processing. The S&T information such as research papers, research reports, patents and GTB are daily updated from NDSL, and the R&D projects information including their participants and output information are updated from the NTIS. The S&T information and the national R&D information are obtained and integrated to the integrated database. Knowledge base is constructed by transforming the relational data into triples referencing R&D ontology. In addition, a topic modeling method is employed to extract the relationships between the S&T documents and topic keyword/s representing the documents. The topic modeling approach enables us to extract the relationships and topic keyword/s based on the semantics, not based on the simple keyword/s. Lastly, we show an experiment on the construction of the integrated knowledge base using the lightweight ontology and topic modeling, and the knowledge map services created based on the knowledge base are also introduced.

Evaluation of Usability on OntoFrame$OntoFrame^{(R)}$ System (연구개발 전주기 지원 시스템 $OntoFrame^{(R)}$에 대한 사용성 평가)

  • Jung, Han-Min;Kim, Pyung;Kang, In-Su;Lee, Seung-Woo;Lee, Mi-Kyung;Sung, Won-Kyung;Kim, Do-Wan
    • Journal of Information Management
    • /
    • v.38 no.2
    • /
    • pp.153-173
    • /
    • 2007
  • [ $OntoFrame^{(R)}$ ] system provides information dissemination service and inference service, based on Semantic Web framework to fully support R&D activities. Although it is one of state-of-the-art systems in the viewpoint of functionality, we are not able to declare whether it has satisfiable usability because of the omission of usability test in development process. Thus, this research tries to reveal the usability level of the $OntoFrame^{(R)}$, and further to find ways to achieve a user-center system. Both 'theory-based assessment' by a software ergonomics expert and 'user test' by four users are used for evaluating the usability of the $OntoFrame^{(R)}$. We look forward this research to being a basic reference for practical systems aiming at satisfiable usability.

Social Network : A Novel Approach to New Customer Recommendations (사회연결망 : 신규고객 추천문제의 새로운 접근법)

  • Park, Jong-Hak;Cho, Yoon-Ho;Kim, Jae-Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.1
    • /
    • pp.123-140
    • /
    • 2009
  • Collaborative filtering recommends products using customers' preferences, so it cannot recommend products to the new customer who has no preference information. This paper proposes a novel approach to new customer recommendations using the social network analysis which is used to search relationships among social entities such as genetics network, traffic network, organization network, etc. The proposed recommendation method identifies customers most likely to be neighbors to the new customer using the centrality theory in social network analysis and recommends products those customers have liked in the past. The procedure of our method is divided into four phases : purchase similarity analysis, social network construction, centrality-based neighborhood formation, and recommendation generation. To evaluate the effectiveness of our approach, we have conducted several experiments using a data set from a department store in Korea. Our method was compared with the best-seller-based method that uses the best-seller list to generate recommendations for the new customer. The experimental results show that our approach significantly outperforms the best-seller-based method as measured by F1-measure.

  • PDF

A Decision Model for BRE Introduction (BRE 도입을 위한 의사결정 모델)

  • Ju, Jung-Eun;Koo, Sang-Hoe
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.3
    • /
    • pp.103-115
    • /
    • 2005
  • For today's enterprises to survive in the current rapidly changing business environments, it is imperative to make quick and successful decisions to various challenges. In making important business decisions, if enterprises utilize business rules and knowledge, properly and promptly, they may effectively reduce the chance of failures. However, in most of today's information systems, these rules and knowledge are not managed in centralized and systemic manner. They disperse over entire enterprises' information systems, and sometimes reside in the heads or memos of enterprises' employees. BRE (Business Rule Engines) is a solution that systematically and centrally manages these business knowledge and rules of an enterprise. With BREs, any business user is able to store, edit, retrieve and utilize business rules and knowledge in centralized repository, without IT development skills. And with BRE, enterprises could improve business intelligence and attain strategic advantages over other enterprises. However, since there is no clear criteria for BRE introductions, it is not easy to decide whether or not to introduce the expensive BRE solution to an enterprise. In this research we propose a decision model for BRE introduction. Using this model, business analysts considering BRE introduction, readily make decisions on BRE introduction.

  • PDF

A Design of Feature-based Data Model Using Digital Map 2.0 (수치지도 2.0을 이용한 객체기반 데이터 모델 설계)

  • Lim, Kwang-Hyeon;Jin, Cheng Hao;Kim, Hyeong-Soo;Li, Xun;Ryu, Keun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.7
    • /
    • pp.33-43
    • /
    • 2012
  • In With increase of a demand on the spatial data, the need of spatial data model which can effectively store and manege spatial objects becomes more important in many GIS applications. There are many researches on the spatial data model. Several data models were proposed for some special functions, however, there are still many problems in the management and applications. Digital Map is one of spatial data model which is being used in Korea. The existing Digital Map is based on the Tiles. This approach needs more cost in its construction and management. Therefore, in this paper, we propose a feature-based seamless data model with Digital map 2.0 which is based on Tiles. This model can be easily constructed and managed in the large databases so that it is able to apply to any systems. The proposed model uses the relationships between features to correct updated data and the Unique Feature IDentifier(UFID) also makes system to search and manage the feature data more easily and efficiently.

A Study on Success Strategies for Generative AI Services in Mobile Environments: Analyzing User Experience Using LDA Topic Modeling Approach (모바일 환경에서의 생성형 AI 서비스 성공 전략 연구: LDA 토픽모델링을 활용한 사용자 경험 분석)

  • Soyon Kim;Ji Yeon Cho;Sang-Yeol Park;Bong Gyou Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.109-119
    • /
    • 2024
  • This study aims to contribute to the initial research on on-device AI in an environment where generative AI-based services on mobile and other on-device platforms are increasing. To derive success strategies for generative AI-based chatbot services in a mobile environment, over 200,000 actual user experience review data collected from the Google Play Store were analyzed using the LDA topic modeling technique. Interpreting the derived topics based on the Information System Success Model (ISSM), the topics such as tutoring, limitation of response, and hallucination and outdated informaiton were linked to information quality; multimodal service, quality of response, and issues of device interoperability were linked to system quality; inter-device compatibility, utility of the service, quality of premium services, and challenges in account were linked to service quality; and finally, creative collaboration was linked to net benefits. Humanization of generative AI emerged as a new experience factor not explained by the existing model. By explaining specific positive and negative experience dimensions from the user's perspective based on theory, this study suggests directions for future related research and provides strategic insights for companies to improve and supplement their services for successful business operations.

Design of Deep Learning-based Tourism Recommendation System Based on Perceived Value and Behavior in Intelligent Cloud Environment (지능형 클라우드 환경에서 지각된 가치 및 행동의도를 적용한 딥러닝 기반의 관광추천시스템 설계)

  • Moon, Seok-Jae;Yoo, Kyoung-Mi
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.473-483
    • /
    • 2020
  • This paper proposes a tourism recommendation system in intelligent cloud environment using information of tourist behavior applied with perceived value. This proposed system applied tourist information and empirical analysis information that reflected the perceptual value of tourists in their behavior to the tourism recommendation system using wide and deep learning technology. This proposal system was applied to the tourism recommendation system by collecting and analyzing various tourist information that can be collected and analyzing the values that tourists were usually aware of and the intentions of people's behavior. It provides empirical information by analyzing and mapping the association of tourism information, perceived value and behavior to tourism platforms in various fields that have been used. In addition, the tourism recommendation system using wide and deep learning technology, which can achieve both memorization and generalization in one model by learning linear model components and neural only components together, and the method of pipeline operation was presented. As a result of applying wide and deep learning model, the recommendation system presented in this paper showed that the app subscription rate on the visiting page of the tourism-related app store increased by 3.9% compared to the control group, and the other 1% group applied a model using only the same variables and only the deep side of the neural network structure, resulting in a 1% increase in subscription rate compared to the model using only the deep side. In addition, by measuring the area (AUC) below the receiver operating characteristic curve for the dataset, offline AUC was also derived that the wide-and-deep learning model was somewhat higher, but more influential in online traffic.

Social Network Analysis for the Effective Adoption of Recommender Systems (추천시스템의 효과적 도입을 위한 소셜네트워크 분석)

  • Park, Jong-Hak;Cho, Yoon-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.305-316
    • /
    • 2011
  • Recommender system is the system which, by using automated information filtering technology, recommends products or services to the customers who are likely to be interested in. Those systems are widely used in many different Web retailers such as Amazon.com, Netfix.com, and CDNow.com. Various recommender systems have been developed. Among them, Collaborative Filtering (CF) has been known as the most successful and commonly used approach. CF identifies customers whose tastes are similar to those of a given customer, and recommends items those customers have liked in the past. Numerous CF algorithms have been developed to increase the performance of recommender systems. However, the relative performances of CF algorithms are known to be domain and data dependent. It is very time-consuming and expensive to implement and launce a CF recommender system, and also the system unsuited for the given domain provides customers with poor quality recommendations that make them easily annoyed. Therefore, predicting in advance whether the performance of CF recommender system is acceptable or not is practically important and needed. In this study, we propose a decision making guideline which helps decide whether CF is adoptable for a given application with certain transaction data characteristics. Several previous studies reported that sparsity, gray sheep, cold-start, coverage, and serendipity could affect the performance of CF, but the theoretical and empirical justification of such factors is lacking. Recently there are many studies paying attention to Social Network Analysis (SNA) as a method to analyze social relationships among people. SNA is a method to measure and visualize the linkage structure and status focusing on interaction among objects within communication group. CF analyzes the similarity among previous ratings or purchases of each customer, finds the relationships among the customers who have similarities, and then uses the relationships for recommendations. Thus CF can be modeled as a social network in which customers are nodes and purchase relationships between customers are links. Under the assumption that SNA could facilitate an exploration of the topological properties of the network structure that are implicit in transaction data for CF recommendations, we focus on density, clustering coefficient, and centralization which are ones of the most commonly used measures to capture topological properties of the social network structure. While network density, expressed as a proportion of the maximum possible number of links, captures the density of the whole network, the clustering coefficient captures the degree to which the overall network contains localized pockets of dense connectivity. Centralization reflects the extent to which connections are concentrated in a small number of nodes rather than distributed equally among all nodes. We explore how these SNA measures affect the performance of CF performance and how they interact to each other. Our experiments used sales transaction data from H department store, one of the well?known department stores in Korea. Total 396 data set were sampled to construct various types of social networks. The dependant variable measuring process consists of three steps; analysis of customer similarities, construction of a social network, and analysis of social network patterns. We used UCINET 6.0 for SNA. The experiments conducted the 3-way ANOVA which employs three SNA measures as dependant variables, and the recommendation accuracy measured by F1-measure as an independent variable. The experiments report that 1) each of three SNA measures affects the recommendation accuracy, 2) the density's effect to the performance overrides those of clustering coefficient and centralization (i.e., CF adoption is not a good decision if the density is low), and 3) however though the density is low, the performance of CF is comparatively good when the clustering coefficient is low. We expect that these experiment results help firms decide whether CF recommender system is adoptable for their business domain with certain transaction data characteristics.