• Title/Summary/Keyword: Storage mechanism

Search Result 507, Processing Time 0.027 seconds

리튬이차전지용 Polyacenic Semiconductor Material의 전기화학적 특성

  • ;;N. Oyama
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.407-410
    • /
    • 1998
  • During the past decade, substantial research effort has been directed into the development of rechargeable lithium batteries. Although some improvements in cycle life and efficiency have been achieved, the reversibility of the lithium electrode remains as a significant problem in aprotic solvent based electrolyte. The major problems limiting cycle life are short circuits resulting from growth of lithium dendrites, and macroscopic shape changes during the recharge process. As an anode material of lithium rechargeable battery, amorphous carbon materials have been studied extensively because of their high electrochemical performance. The polyacene materials prepared from phenol refine at relatively low temperature(550∼750$^{\circ}C$) show a highly Li-doped state up C$_2$Li state without liberation of Li cluster. So it has largely layered distance 4${\AA}$. The Li storage mechanism as well as the large hysterisis observed in the voltage-capacity profile of the amorphous carbone materials are still the subjects of controversy. We prepared each polyacene material various temperature and investigated electrochemical property. The mole ratio of [H]/[C] is 0.027∼0.015 range.

  • PDF

Effects of Design Parameters on the Ergonomic Quality of a Self-Closing Drawer (자동귀환 서랍의 감성품질에 대한 설계인자 영향 분석)

  • Seo, Man Cheol;Kim, Kwon Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.655-660
    • /
    • 2016
  • Self-closing drawers are used in high-end products, such as furniture, home appliances, and a range of other storage devices. In this study, a self-closing mechanism is proposed. A system consisting of a friction latch, constant force spring, rotary damper with rack, and pinion is developed. The retracting drawer can be latched at any position and can be reactivated by simple touch. The constant force spring and rotary damper offer smooth closing action. The ergonomic quality of the closing action is quantified by an index based on velocity-time behavior. The effects of various design parameters are analyzed with a dynamics model and experimentally validated by prototype testing.

Study on Load Redistribution Mechanism in Grid System (그리드시스템을 위한 부하재분배 메커니즘에 관한 연구)

  • Lee, Seong-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2350-2353
    • /
    • 2009
  • For applications that are grid enabled, the grid can offer a resource balancing effect by scheduling grid jobs on machines with low utilization. When jobs communicate with each other, the internet, with storage resources, an advanced scheduler could schedule them to minimize communications traffic or minimize the distance of the communications. We propose an load redistribution algorithm to minimize communication traffic and distance of the communication using genetic algorithm. The experiments show the proposed load redistribution algorithm performs efficiently in the variance of load in grid environments.

Analysis and Comparison of Consistency Control Mechanism for Storage Class Memory based File System (스토리지 클래스 메모리 기반 파일시스템의 일관성 유지 기법 비교 및 분석)

  • Lee, HyunKu;Kim, Junghoon;Eom, YoungIk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.50-51
    • /
    • 2014
  • 최근 기존 스토리지의 물리적 한계를 극복하기 위해 차세대 스토리지로 불리는 스토리지 클래스 메모리(SCM)의 연구 및 개발이 활발히 진행되고 있다. 이러한 SCM의 장점을 활용하기 위한 SCM 전용파일 시스템 또한 많은 연구가 되고 있다. 하지만, 현재까지 연구되어온 SCM 전용 파일 시스템은 빠른 속도에만 중점을 두어 부분적인 일관성 지원 또는 특정한 환경에서의 시스템 성능 저하 등의 문제요인이 있다. 본 논문에서는 SCM과 SCM 전용 파일 시스템을 알아보고 일관성 유지 기법의 비교 및 분석을 통하여 현재까지 연구된 일관성 유지 기법의 문제점을 파악하고 SCM에 최적화된 새로운 일관성 유지 기법의 방향을 모색한다.

A Journey to Understand Glucose Homeostasis: Starting from Rat Glucose Transporter Type 2 Promoter Cloning to Hyperglycemia

  • Ahn, Yong Ho
    • Diabetes and Metabolism Journal
    • /
    • v.42 no.6
    • /
    • pp.465-471
    • /
    • 2018
  • My professional journey to understand the glucose homeostasis began in the 1990s, starting from cloning of the promoter region of glucose transporter type 2 (GLUT2) gene that led us to establish research foundation of my group. When I was a graduate student, I simply thought that hyperglycemia, a typical clinical manifestation of type 2 diabetes mellitus (T2DM), could be caused by a defect in the glucose transport system in the body. Thus, if a molecular mechanism controlling glucose transport system could be understood, treatment of T2DM could be possible. In the early 70s, hyperglycemia was thought to develop primarily due to a defect in the muscle and adipose tissue; thus, muscle/adipose tissue type glucose transporter (GLUT4) became a major research interest in the diabetology. However, glucose utilization occurs not only in muscle/adipose tissue but also in liver and brain. Thus, I was interested in the hepatic glucose transport system, where glucose storage and release are the most actively occurring.

환경시험에 의한 볼트의 도금두께 설계

  • Kim Jin Soo;Kim Gwang Sub
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2005.06a
    • /
    • pp.349-355
    • /
    • 2005
  • The bolts used for the electronic parts of a car a is the important parts which carry out an electric and physical performance. At the time of storage, transportation and use, Corrosion occurs in bolts under the influence of environmental factor. During the period exported especially overseas the chemical corrosion by the chlorine ion contained in the atmosphere occurs frequency. Then, The failure mechanism over corrosion is investigated and we consider to the design procedure of a environmental examination. We are going to select the proper plating thickness of bolts through a salt spray test, for investigating the corrosion resistance of bolts.

  • PDF

Mechanical and acoustic behaviors of brine-saturated sandstone at elevated temperature

  • Huang, Yan-Hua;Yang, Sheng-Qi
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.215-225
    • /
    • 2019
  • The mechanical behavior of rock is essential to estimate the capacity and long-term stability of $CO_2$ storage in deep saline aquifers. As the depth of reservoir increases, the pressure and temperature that applied on the rock increase. To answer the question of how the confining pressure and temperature influence the mechanical behavior of reservoir rock, triaxial compression experiments were carried out on brine-saturated sandstone at elevated temperature. The triaxial compressive strength of brine-saturated sandstone was observed to decrease with increasing testing temperature, and the temperature weakening effect in strength enhanced with the increase of confining pressure. Sandstone specimens showed single fracture failures under triaxial compression. Three typical regions around the main fracture were identified: fracture band, damaged zone and undamaged zone. A function was proposed to describe the evolution of acoustic emission count under loading. Finally, the mechanism of elevated temperature causing the reduction of strength of brine-saturated sandstone was discussed.

Effects of HLB value on oil-in-water emulsions: Droplet size, rheological behavior, zeta-potential, and creaming index

  • Hong, In Kwon;Kim, Su In;Lee, Seung Bum
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.123-131
    • /
    • 2018
  • Using mixed nonionic surfactants Span/Tween, we investigated the effects of HLB value on the O/W emulsion stability and rheological behaviors. In this study, MS-01 (Span 60 & Tween 60) and MS-02 (Span 80 & Tween 80) was used as mixed nonionic surfactants. We considered required HLB value 10.85 and selected corresponding HLB value range 8-13. The droplet size distributions, droplet morphology, rheological properties, zeta-potential and creaming index of the emulsion samples were obtained to understand the mechanism and interaction of droplets in O/W emulsion. The results indicated that optimal HLB number for O/W emulsions was 10.8 and 10.7, while using MS-01 surfactant and MS-02 surfactant respectively. MS-01 (HLB = 10.8) sample and MS-02 (HLB = 10.7) sample showed smallest droplet size and highest zeta-potential value. Rheological properties are measured to understand rheological behaviors of emulsion samples. All emulsion samples showed no phase separation until 30 days storage time at $25^{\circ}C$.

Trust Evaluation Metrics for Selecting the Optimal Service on SOA-based Internet of Things

  • Kim, Yukyong
    • Journal of Software Assessment and Valuation
    • /
    • v.15 no.2
    • /
    • pp.129-140
    • /
    • 2019
  • In the IoT environment, there is a huge amount of heterogeneous devices with limited capacity. Existing trust evaluation methods are not adequate to accommodate this requirement due to the limited storage space and computational resources. In addition, since IoT devices are mainly human operated devices, the trust evaluation should reflect the social relations among device owners. There is also a need for a mechanism that reflects the tendency of the trustor and environmental factors. In this paper, we propose an adaptable trust evaluation method for SOA-based IoT system to deal with these issues. The proposed model is designed to minimize the confidence bias and to dynamically respond to environmental changes by combining direct evaluation and indirect evaluation. It is expected that it will be possible to secure trust through quantitative evaluation by providing feedback based on social relationships.

Coupled Thermal-Hydrological-Mechanical Behavior of Rock Mass Surrounding Cavern Thermal Energy Storage (암반공동 열에너지저장소 주변 암반의 열-수리-역학적 연계거동 분석)

  • Park, Jung-Wook;Rutqvist, Jonny;Ryu, Dongwoo;Synn, Joong-Ho;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.155-167
    • /
    • 2015
  • The thermal-hydrological-mechanical (T-H-M) behavior of rock mass surrounding a high-temperature cavern thermal energy storage (CTES) operated for a period of 30 years has been investigated by TOUGH2-FLAC3D simulator. As a fundamental study for the development of prediction and control technologies for the environmental change and rock mass behavior associated with CTES, the key concerns were focused on the hydrological-thermal multiphase flow and the consequential mechanical behavior of the surrounding rock mass, where the insulator performance was not taken into account. In the present study, we considered a large-scale cylindrical cavern at shallow depth storing thermal energy of $350^{\circ}C$. The numerical results showed that the dominant heat transfer mechanism was the conduction in rock mass, and the mechanical behavior of rock mass was influenced by thermal factor (heat) more than hydrological factor (pressure). The effective stress redistribution, displacement and surface uplift caused by heating of rock and boiling of ground-water were discussed, and the potential of shear failure was quantitatively examined. Thermal expansion of rock mass led to the ground-surface uplift on the order of a few centimeters and the development of tensile stress above the storage cavern, increasing the potential of shear failure.