• Title/Summary/Keyword: Storage facilities

Search Result 823, Processing Time 0.025 seconds

Research on the Actual State of Facilities and Behavior of the Sanitary zones in Collective and Detached Houses in Jeju City (제주시 공동주택과 단독주택에서 생리ㆍ위생공간의 설비ㆍ기구 실태 및 행태에 관한 연구)

  • Kim Bong-Ae;Lee Jeong-Lim
    • Journal of the Korean Home Economics Association
    • /
    • v.42 no.9
    • /
    • pp.99-109
    • /
    • 2004
  • In residential spaces, sanitary zones are where the most basic needs of human beings are met and are used by all members of the family. A high level of privacy is therefore required in their use. This research studies the current state of sanitary zones in collective houses and in detached houses from a comparative perspective first, and then analyses the satisfaction and dissatisfaction requirement levels of dwellers of each house in comparison so as to provide data to formulate a new design for sanitary zones that is suitable for each dwelling house. The results of this research are as follows. (1) The questionnaire respondents were mostly in their 30s and 40s (99.1% in total), and lived in a nuclear family system (87.7%). (2) The number of sanitary zones was found to be more than 2 in 62% of collective houses and in 60.7% of detached houses, which leads us to conclude that non-dwelling spaces are increasing in both types of houses. (3) Of the housing facilities,13% of collective houses and 9% of detached houses were equipped with a bidet. Both percentages are very low but it needs to be noted that the percentage is relatively high in collective houses. In safety facilities, the ratio of houses furnished with safety handlers for the aged was very low in both types of houses. (4) The residents of collective houses showed high levels of dissatisfaction with regard to the problems of storage space and steam production, while residents of detached houses expressed high levels of dissatisfaction with regard to the heating system, colors of finishing materials, size, dampness, steam production, and storage space.

A Study on Power Trading Methods for in a Hydrogen Residential Model (수소주거모델의 전력 거래 참여 방안 고찰)

  • KISEOK JEONG;TAEYOUNG JYUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.2
    • /
    • pp.91-99
    • /
    • 2023
  • Participation in power trading using surplus power is considered a business model active in the domestic energy trade market, but it is limited only if the legal requirements according to the type, capacity, and use of the facilities to be applied for are satisfied. The hydrogen residential demonstration model presented in this paper includes solar power, energy storage system (ESS), fuel cell, and water electrolysis facilities in electrical facilities for private use with low-voltage power receiving system. The concept of operations strategy for this model focuses on securing the energy self-sufficiency ratio of the entire system, securing economic feasibility through the optimal operation module installed in the energy management system (EMS), and securing the stability of the internal power balancing issue during the stand-alone mode. An electric facility configuration method of a hydrogen residential complex demonstrated to achieve this operational goal has a structure in which individual energy sources are electrically connected to the main bus, and ESS is also directly connected to the main bus instead of a renewable connection type to perform charging/discharging operation for energy balancing management in the complex. If surplus power exists after scheduling, participation in power trading through reverse transmission parallel operation can be considered to solve the energy balancing problem and ensure profitability. Consequentially, this paper reviews the legal regulations on participation in electric power trading using surplus power from hydrogen residential models that can produce and consume power, gas, and thermal energy including hybrid distributed power sources, and suggests action plans.

Seismic Behavior Characteristics of Spherical Storage Tanks Supported by Inelastic Members and Performance-Based Seismic Design Based on Reliability (비선형지지구조 저장탱크의 지진거동 특성과 신뢰도 기반의 성능기반 내진설계)

  • Jang jeong min;Sun chang ho;Kim ick hyun;Choi jeong in
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.27-33
    • /
    • 2023
  • In a petrochemical plant, various mechanical equipments and structures are interconnected to ensure operability. Since the production activities of petrochemical plants have a great impact on the national economy, it is very important to maintain not only structural safety but also the operability of the facilities. However, the current seismic design standards present the design requirements of facilities mainly aimed at preventing collapse, and do not provide the requirements for securing operability of facilities. Depending on the behavioral characteristics of the facility, operability of the facility can be secured by seismic performance levels other than the collapse prevention level, so it is necessary to present seismic design methods that can apply various seismic performance levels. Spherical (ball) storage tanks are supported by columns and braces and exhibit complex nonlinear behavior because of buckling and yielding of support members. In this study, nonlinear seismic behavior characteristics were statistically analyzed and a new performance-based seismic design method was proposed based on them.

New curing method using gaseous oxidant on sweet potato (Ipomoea batatas)

  • Jin, Hyunjung;Kim, Wook
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.39-39
    • /
    • 2017
  • In Asia, sweet potato (Ipomoea batatas) is a very important crop for starch production. Approximately 74.3% of the total sweet potato production quantity is produced in Asia (FAO, 2014) and China is the largest producer of sweet potato. Post-harvest management is particularly important because it is difficult to maintain the quality as well as quantity of sweet potatoes. Despite the importance of post-harvest management, researches on sweet potato have been focused on production-related study such as breeding of new variety, improved techniques of cultivation, so there is limited research on storage after harvest. Curing is a normal practice after sweet potato harvest to promote wound healing and extend postharvest storage life. In Korea, harvested sweet potatoes are usually cured for 4 to 7 days at $30-33^{\circ}C$ and 80-95% relative humidity within one week. Since the optimum storage temperature of sweet potato is regarded as $15-20^{\circ}C$, additional facilities and costs are required to raise the temperature for curing. However, the majority of small farmers do not have the capacity to provide additional facilities and costs. This study was initiated to suggest a new curing method to accelerate the wound healing by applying chemical oxidation to the wound surface of sweet potato. Oxidative stress is known to play an important role in the synthesis of secondary metabolites including lignin. In addition, chemical oxidation can be applied to prevent spoilage caused by microorganisms. Powerful gaseous oxidant with excellent penetration ability and superior sterilization effect was selected for this study. Lignification, weight loss, and spoilage rate of artificially wounded sweet potatoes were investigated after oxidant fumigation. There were clear differences in morphological analysis such as lignification pattern, lignin deposition color, and continuity of lignified cell layers between oxidant-fumigated sweet potatoes and control. These results show that gaseous oxidant can be used to supplement or replace the curing practice, to improve shelf-life as well as curing cost reduction.

  • PDF

Simulation Analysis for Improving the Logistics Flow in an Chemical Storage System (석유화학 창고 시스템 내 물류 흐름 개선을 위한 시뮬레이션 분석)

  • Lee, Gi-Hwan;Jo, Jae-Young;Chae, Gyu-Tae;Jang, Seong-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.3
    • /
    • pp.77-86
    • /
    • 2020
  • In this study, to improve the logistics flow of existing given chemical logistics warehouse, four logistics flow alternatives were proposed to minimize truck interference by building simulation model. The simulation model for chemical storage warehouse was built to evaluate system performance. Among the four new improved alternatives based on the basic model, the model with the same truck's pathways and locations of facilities identified an increase in the number of interferences but a decrease in daily working hours as the number of resources in a particular facility increases. Therefore, the three groups were classified as 'efficiency', 'complementary', and 'safety' based on the daily working hours, and the ratio of trucks entering two types of logistics warehouse was set in consideration of future market fluctuations. For each of the six types, the optimal number of resources was selected as the number of resources in the facilities with the least number of interferences in the basic model and the evaluation measures and characteristics set in this study were compared and analyzed. As a result, the Alternative 4 model operating the underground roadway produced interference between 17.0% and 36.4% of the basic model, with 113.3% of the interior loadspace.

Safety Assessment of Aircraft Crash Accident Into Spent Nuclear Fuel Dry Storage Facility - A Review With Focus on Structural Evaluation (사용후핵연료 건식저장시설의 항공기 충돌 구조안전성평가 연구 현황)

  • Lee, Sanghoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.263-278
    • /
    • 2019
  • Since the 1970s, aircraft crash accidents have been considered as one of the severest external events that should be evaluated for license application of nuclear reactors. After the 9.11 terrorist attacks, many countries have performed safety assessment against intentional or targeted aircraft crashes into nuclear related facilities. In some countries, assessment against targeted aircraft crash was enforced by regulation and considered an important task for license approval. Safety assessment against aircraft crash is a technically difficult task and many countries manage R&D programs to improve its reliability. In this paper, regulations of many countries regarding safety assessment against aircraft crash are summarized, separating regulations for accident aircraft crash and those for targeted aircraft crash. Research performed in various countries on safety assessment of nuclear facility against aircraft crash are summarized, with a focus on spent nuclear fuel dry storage facilities.

An experimental study on the factors to improve the formation performance of gas hydrate (가스하이드레이트 제조성능 향상을 위한 영향인자 검토 연구)

  • Shin, Chang-Hoon;Kim, Yu-Na;Kwon, Ok-Bae;Park, Seung-Su;Han, Jeong-Min;Lee, Jeong-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2989-2994
    • /
    • 2007
  • Gas hydrates are ice-like crystalline compounds that form under low temperature and elevated pressure conditions. Although hydrate formation can pose serious flow-assurance problems in the gas pipelines or facilities, gas hydrates present a novel means for natural gas storage and transportation with potential applications in a wide variety of areas. An important property of hydrates that makes them attractive for use in gas storage and transportation is their very high gas-to-solid ratio. In addition to the high gas content, gas hydrates are remarkably stable. The main barrier to development of gas hydrate technology is the lack of an effective method to mass produce gas hydrate in solid form. The first objective of this study is investigating the characteristics of gas hydrate formation related to several factors such as pressure, temperature, water-to-storage volume ratio, concentration of SDS, heat transfer and whether stirred or not respectively. And the second objective is clarifying the relation between the formation efficiency and each factor in order to find the proper way or direction to improve the formation performance.

  • PDF

The Study of Kogas Membrane Performance Test for LNG Storage Tank (Kogas 멤브레인 성능평가에 관한 연구)

  • Kim Y.K.;Hong S.H.;Yoon I.S.;Oh B.T.;Seo H.S.
    • 한국가스학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.16-22
    • /
    • 2001
  • LNG demand has been rapidly increasing in Korea for a variety of reaso including stable supply, non- polluting, and high combustion efficiency characteris As a result the construction and expansion of LNG storage facilities have b continuing at a vigorous pace. One of the most important structural core elemen the LNG storage tank is the membrane, consisting of stainless steel. The memb to be applied inside of LNG storage tank is provided with corrugations to abs thermal contraction and expansion caused by LNG temperature. From the viewp of strength design, however. it is essential to confirm that the membrane undergo a stable deformation and has a sufficient fatigue strength Experim studies are presented to investigate the deformation and strength of the memb which is designed by Kogas. All experiments are conducted on the basis of RP and we found the results is fully satisfied with the RPIS.

  • PDF

A Study on the Decision of Appropriate Subsidy Levels for Energy Storage Systems Considering Load Leveling in Smart Place (부하평준화 기능을 고려한 주택용 ESS의 적정 지원금 산정에 관한 연구)

  • Kim, Jung-Hoon;Hwang, Sung-Wook;Lee, Hak-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.211-216
    • /
    • 2014
  • Construction of power plants and T&D facilities is so difficult because of the civil complaints and the additional cost according to the concerning field conditions. Therefore, various researches and methods have been considered to get solutions in the demand side and energy storage systems have been in the spotlight because of the various functions such as peak shaving, load shifting, and power system stabilizing, and so on. Residential small size batteries are considered in this paper and the economic analysis is carried out to evaluate the reasonable subsidy levels for the deployment of energy storage systems. Various economic parties are considered to find reasonable subsidy level comparing each other, which parties consist of utilities, participants and non-participants in general. The evaluation is based on California Standard Practice Test and the results are able to be used as subsidy guidelines.

Hydraulic Stability Examination of Rainwater Reservoir Pipe Network System on Various Inflow Conditions (유입량 변화에 따른 도심지 내 우수저류조 관망시스템의 안정성 검토)

  • Yoo, Hyung Ju;Kim, Dong Hyun;Maeng, Seung Jin;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.4
    • /
    • pp.1-13
    • /
    • 2019
  • Recently, as the occurrence frequency of sudden floods due to climate change increased, it is necessary to install the facilities that can cope with the initial stormwater. Most researches have been conducted on the design of facilities applying the Low Impact Development (LID) and the reduction effect on rainfall runoff to examine with 1D or 2D numerical models. However, the studies on the examination about flow characteristics and stability of pipe network systems were relatively insufficient in the literature. In this study, the stability of the pipe network system in rainwater storage tank was examined by using 3D numerical model, FLOW-3D. The changes of velocity and dynamic pressure were examined according to the number of rainwater storage tank and compared with the design criteria to derive the optimal design plan for a rainwater storage tank. As a results of numerical simulation with the design values in the previous study, it was confirmed that the velocity became increased as the number of rainwater storage tank increased. And magnitude of the velocity in pipes was formed within the design criteria. However, the velocity in the additional rainwater storage pipe was about 3.44 m/s exceeding the allowable range of the design criteria, when three or more additional rainwater storage tanks were installed. In the case of turbulence intensity and bottom shear stress, the bottom shear stress was larger than the critical shear stress as the additional rainwater storage was increased. So, the deposition of sediment was unlikely to occur, but it should be considered that the floc was formed by the reduction of the turbulence intensity. In addition, the dynamic pressure was also satisfied with the design criteria when the results were compared with the allowable internal pressure of the pipes generally used in the design of rainwater storage tank. Based on these results, it was suitable to install up to two additional rainwater storage tanks because the drainage becomes well when increasing of the number of storage tank and the velocity in the pipe becomes faster to be vulnerable to damage the pipe. However, this study has a assumption about the specifications of the rainwater storage tanks and the inflow of stormwater and has a limitation such that deriving the suitable rainwater storage tank design by simply adding the storage tank. Therefore, the various storage tank types and stormwater inflow scenarios will be asked to derive more efficient design plans in the future.