• 제목/요약/키워드: Storage coefficient

검색결과 470건 처리시간 0.031초

유역 및 기상상태를 고려한 Clark 단위도의 매개변수 평가: 1. 대표 호우사상의 선정 및 분석 (Evaluation of the Clark Unit Hydrograph Parameters Considering Basin and Meteorologic at Conditions : 1. Selection and Analysis of Representative Storm Events)

  • 유철상;김기욱;이지호
    • 한국수자원학회논문집
    • /
    • 제40권2호
    • /
    • pp.159-170
    • /
    • 2007
  • 본 연구에서는 관측자료에 나타난 Clark 단위도의 매개변수를 검토하고 그 변동성을 평가하였다. 여기에는 강우-유출과정에 영향을 미치는 유역 및 기상 특성인자들을 확률밀도함수를 적용하여 정량화하고, 이를 바탕으로 하여 관측 강우-유출 사상 중 평균적인 사상을 분류하며, 마지막으로 선별된 강우-유출 사상에 대해 Clark 단위도의 평균적인 매개변수를 유도하는 과정이 포함된다. 이러한 과정을 통해 얻은 결과를 정리하면 다음과 같다. (1) 유역을 대표하는 유출특성(즉, 집중시간 및 저류상수)의 결정에는 관측 강우-유출사상의 수가 어느 정도 확보된다고 하더라도 여전히 높은 불확실성을 피하기 힘들다. (2) 집중시간의 경우는 그 분포가 상당히 왜곡된 형태여서 단순한 산술평균은 상당히 왜곡된 추정치를 제시할 가능성이 높다. 즉, 정규분포에 근거한 평균값인 산술평균은 더 이상 집중시간에 대한 대표값의 역할을 하지 못한다. 오히려 최빈값의 경우가 보다 대표성을 갖는 것으로 판단된다. 반면에 저류상수의 경우는 거의 대칭인 분포를 하고 있으므로 산술평균이 어느 정도의 대표성을 확보한다고 판단할 수 있다. 본 연구의 대상유역의 경우 집중시간은 대략 7시간 정도가, 저류상수는 대략 22시간 정도가 적절한 것으로 판단된다.

기상인자가 농업용 저수지 저수량에 미치는 영향연구 (The Effect of Meteorological Factors on the Temporal Variation of Agricultural Reservoir Storage)

  • 안소라;박민지;박근애;김성준
    • 한국농공학회논문집
    • /
    • 제49권4호
    • /
    • pp.3-12
    • /
    • 2007
  • The purpose of this paper is to analyze the relationship between meteorological factors and agricultural reservoir storage, and predict the reservoir storage by multiple regression equation selected by high correlated meteorological factors. Two agricultural reservoirs (Geumgwang and Gosam) located in the upsteam of Gongdo water level gauging station of Anseong-cheon watershed were selected. Monthly reservoir storage data and meteorological data in Suwon weather station of 21 years (1985-2005) were collected. Three cases of correlation (case 1: yearly mean, case 2: seasonal mean dividing a year into 3 periods, and case 3: lagging the reservoir storage from 1 month to 3 months under the condition of case 2) were examined using 8 meteorological factors (precipitation, mean/maximum/minimum temperature, relative humidity, sunshine hour, wind velocity and evaporation). From the correlation analysis, 4 high correlated meteorological factors were selected, and multiple regression was executed for each case. The determination coefficient ($R^{2}$) of predicted reservoir storage for case 1 showed 0.45 and 0.49 for Geumgwang and Gosam reservoir respectively. The predicted reservoir storage for case 2 showed the highest $R^{2}$ of 0.46 and 0.56 respectively in the period of April to June. The predicted reservoir storage for 1 month lag of case 3 showed the $R^{2}$ of 0.68 and 0.85 respectively for the period of April to June. The results showed that the status of agricultural reservoir storage could be expressed with couple of meteorological factors. The prediction enhanced when the storage data are divided into periods rather than yearly mean and especially from the beginning time of paddy irrigation (April) to high decrease of reservoir storage (June) before Jangma.

A Study on Calculating Relevant Length of Left Turn Storages Using UAV Spatial Images Considering Arrival Distribution Characteristics at Signalized Intersections in Urban Commercial Areas

  • Yang, Jaeho;Kim, Eungcheol;Na, Young-Woo;Choi, Byoung-Gil
    • 한국측량학회지
    • /
    • 제36권3호
    • /
    • pp.153-164
    • /
    • 2018
  • Calculating the relevant length of left turn storages in urban intersections is very crucial in road designs. A left turn lane consists of deceleration lanes and left turn storages. In this study, we developed methods for calculating relevant lengths of left turn storages that vary at each intersection using UAV (Unmanned Aerial Vehicle) spatial images. Problems of conventional design techniques are applying the same number of left turn vehicles (N) using Poisson distribution without considering land use types, using a vehicle length that may not be measurable when applying the length of waiting vehicles (S), and using same storage length coefficient (${\alpha}$), 1.5, for every intersections. In order to solve these problems, we estimated the number of left turn vehicles (N) using an empirical distribution, suggested to use headways of vehicles for (S) to calculate the length of waiting vehicles (S) with a help of using UAV spatial images, and defined ranges of storage length coefficient (${\alpha}$) from 1.0 to 1.5 for flexible design. For more convenient design, it is suitable to classify two cases when possible to know and impossible to know about ratio of large trucks among vehicles when planning an intersection. We developed formula for each case to calculate left turn storage lengths of a minimum and a maximum. By applying developed methods and values, more efficient signalized intersection operation can be accomplished.

태양열과 재열기를 사용한 VI heat pump의 성능 특성에 관한 연구 (Heating Performance Characteristics of Heat Pump with VI cycle using Re-Heater and Solar-Assisted)

  • 이진국;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제35권6호
    • /
    • pp.25-33
    • /
    • 2015
  • In this study, heating performance of the air-cooled heat pump with vapor-injection (VI) cycles, re-heater and solar heat storage tank was investigated experimentally. Devices used in the experiment were comprised of a VI compressor, re-heater, economizer, variable evaporator, flat-plate solar collector for hot water, thermal storage tank, etc. As working fluid, refrigerant R410A for heat pump and propylene glycol (PG) for solar collector were used. In this experiment, heating performance was compared by three cycles, A, B and C. In case of Cycle B, heat exchange was conducted between VI suction refrigerant and inlet refrigerant of condenser by re-heater (Re-heater in Fig. 3, No. 3) (Cycle B), and Cycle A was not use re-heater on the same operating conditions. In case of Cycle C, outlet refrigerant from evaporator go to thermal storage tank for getting a thermal energy from solar thermal storage tank while re-heater also used. As a result, Cycle C reached the target temperature of water in a shorter time than Cycle B and Cycle A. In addition, it was founded that, as for the coefficient of heating performance($COP_h$), the performance in Cycle C was improved by 13.6% higher than the performance of Cycle B shown the average $COP_h$ of 3.0 and by 18.9% higher than the performance of Cycle A shown the average $COP_h$ of 2.86. From this results, It was confirmed that the performance of heat pump system with refrigerant re-heater and VI cycle can be improved by applying solar thermal energy as an auxiliary heat source.

복합조미료의 유통기한 설정 및 포장저장중 품질변화 (Prediction of shelf-life and change of quality attributes in packaged composite seasoning during storage)

  • 문광덕;김현구;조길석;박무현
    • Applied Biological Chemistry
    • /
    • 제35권4호
    • /
    • pp.281-285
    • /
    • 1992
  • 시판 쇠고기 맛 복합조미료를 PE/Al/PE/PET의 적층포장재로 포장저장중 온도인자에 의한 $Q_{10}$값은 2.54였으며 이로부터 $35^{\circ}C$, $25^{\circ}C$$15^{\circ}C$에서의 shelf-life는 각각 29주, 73주 및 185주로 예측되었다. 색상중 L값은 $50^{\circ}C$ 저장중 다소 감소하였으나 a 및 b값은 큰 변화가 없었으며 색상과 기호도와의 상관계수는 대체로 낮게 나타났다. 갈변도와 카르보닐값은 저장중온도가 높을수록 증가하는 경향이었으며 기호도와의 상관계수는 비교적 높게 나타났다. 수분, 염도 및 총당은 저장 전기간중 KS-규격기준에 적합하였다.

  • PDF

Performance Analysis of Water-Water Heat Pump System of 100 kW Scale for Cooling Agricultural Facilities

  • Kang, Youn Ku;Ryou, Young Sun;Jang, Jae Kyung;Kim, Young Hwa;Kim, Jong Goo;Kang, Geum Chun
    • Journal of Biosystems Engineering
    • /
    • 제39권1호
    • /
    • pp.34-38
    • /
    • 2014
  • Purpose: In this study, the performance of cooling system with the water-water heat pump system of 100kW scale made for cooling agricultural facilities, especially for horticultural facilities, was analyzed. It was intended to suggest performance criteria and performance improvement for the effective cooling system. Methods: The measuring instruments consisted of two flow meters, a power meter and thermocouples. An ultrasonic and a magnetic flow meter measured the flow rate of the water, which was equivalent to heat transfer fluid. The power meter measured electric power in kW consumed by the heat pump system. T-type thermocouples measured the temperature of each part of the heat pump system. All of measuring instruments were connected to the recorder to store all the data. Results: When the water temperature supplied into the evaporator of the heat pump system was over $20^{\circ}C$, the cooling Coefficient Of Performance(COP) of the system was higher than 3.0. As the water temperature supplied into the evaporator, gradually, lowered, the cooling COP, also, decreased, linearly. Especially, when the water temperature supplied into the evaporator was lower than $15^{\circ}C$, the cooling COP was lower below 2.5. Conclusions: In order to maintain the cooling COP higher than 3.0, we suggest that the water temperature supplied into evaporator from the thermal storage tank should be maintained above $20^{\circ}C$. Also, stratification in the thermal storage tank should be formed well and the circulating pumps and the pipe lines should be arranged in order for the relative low-temperature water to be stored in the lower part of the thermal storage tank.

유역특성(流域特性)과 홍수도달시간(洪水到達時間)과의 상관해석(相關解析) (Analysis on Relations between Travel time and Watershed Characteristics)

  • 서승덕;임규동
    • Current Research on Agriculture and Life Sciences
    • /
    • 제5권
    • /
    • pp.158-167
    • /
    • 1987
  • The purpose of this study is to inquire and analyse the relation between traveltime (Tc) and watetshed physical characteristics surveyed such as river length (L), Lea, river main slope (s), base length of time area diagram, and storage constant (k). The results obtained in this study are as follows. The average widths of watersheds were with the range from 4.6 kilometers to 16.7 kilometers. The shape factors of main stream ranged from 0.08 to 0.37. The average slopes to main 8tream were within the range of 1.7-5.5 meter per kilometer. The relation between the base length and traveltime from S. C. S. method, Rational method, and RZIHA+KRAVEN method were derived $Tc=0.524{\times}1.35^c$ (r=0.98), $Tc=0.628{\times}1.339^c$, (r=0.98), $Tc=0.667{\times}1.342^c$ (r=0.97). The base length of the time-area diagram (c) for the IUH was derived as $c=0.9(\frac{L.L_{ca}}{\sqrt{s}})^{0.35}$ and correlation coefficient was 0.98 which defined a high significance. The storage constant K, derived in this study was $K=8.32+0.0213{\frac{L}{\sqrt{s}}}$ with correlation coefficient (0.96). The relation between storage Constant and conventional formula were figured out $Tc=0.0003{\times}3.323^k$ (r=0.97). $Tc=0.00045{\times}3.268^k$ (r=0.99) and $Tc=0.0004{\times}3.26^k$ (r=0.963). The base length (c) and storage constant (k) of time-Area Diagram were very important parts that determined traveltime for flood events. In the estimate of travel time for predicting flood volume, the formula of $Tc=0.524{\times}1.35^c$ that would be available to apply the Nak - Dong river watershed area and homogeneous watershed characteristics was found.

  • PDF

Evaluation method and experimental study on seismic performance of column-supported group silo

  • Jia Chen;Yonggang Ding;Qikeng Xu;Qiang Liu;Yang Zhou
    • Structural Engineering and Mechanics
    • /
    • 제90권6호
    • /
    • pp.577-590
    • /
    • 2024
  • Considering the Column-Supported Group Silos (CSGSs) often arranged by rows in practical applications, earthquake responses will be affected by group effect. Since group effect presenting uncertainties, establishing the analytic model and evaluating characteristics of CSGSs seems necessary. This study aimed at providing a simplified method to evaluate seismic performances of the CSGSs. Firstly, the CSGSs with different storage granule heights are used as numerical examples to derive the base shear formula for three-particle dynamic analytical model. Then, the base shear distribution coefficient is defined as the group effect index. The simplified calculation method of the group silos based on the distribution coefficients is proposed. Finally, based on the empty, half, and full granular storage conditions, the empirical design parameters for the group silos system are given by combining finite element simulation with shaking table test. The group effect of storage granule heights of group silos on its frequency and base shear are studied by comparative analysis between group silos and independent single silo. The results show that the frequency of CSGSs decreases with the increasing weight of the stored granule. The connection between the column top and silo bottom plate is vulnerable, and structural measures should be strengthened to improve its damage resistance. In case of different storage granule heights, distribution coefficients are effective to reconstruction the group effect. The complex calculations of seismic response for CSGSs can be avoided by adopting the empirical distribution coefficients obtained in this study. The proposed method provides a theoretical reference for evaluation on the seismic performances of the CSGSs.

Randomized Block Size (RBS) Model for Secure Data Storage in Distributed Server

  • Sinha, Keshav;Paul, Partha;Amritanjali, Amritanjali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권12호
    • /
    • pp.4508-4530
    • /
    • 2021
  • Today distributed data storage service are being widely used. However lack of proper means of security makes the user data vulnerable. In this work, we propose a Randomized Block Size (RBS) model for secure data storage in distributed environments. The model work with multifold block sizes encrypted with the Chinese Remainder Theorem-based RSA (C-RSA) technique for end-to-end security of multimedia data. The proposed RBS model has a key generation phase (KGP) for constructing asymmetric keys, and a rand generation phase (RGP) for applying optimal asymmetric encryption padding (OAEP) to the original message. The experimental results obtained with text and image files show that the post encryption file size is not much affected, and data is efficiently encrypted while storing at the distributed storage server (DSS). The parameters such as ciphertext size, encryption time, and throughput have been considered for performance evaluation, whereas statistical analysis like similarity measurement, correlation coefficient, histogram, and entropy analysis uses to check image pixels deviation. The number of pixels change rate (NPCR) and unified averaged changed intensity (UACI) were used to check the strength of the proposed encryption technique. The proposed model is robust with high resilience against eavesdropping, insider attack, and chosen-plaintext attack.

Seismic vulnerability of sliding isolation concrete rectangular liquid storage tanks

  • Cheng, Xuansheng;Yin, Siyuan;Chen, Wenjun;Jing, Wei
    • Structural Engineering and Mechanics
    • /
    • 제84권4호
    • /
    • pp.503-515
    • /
    • 2022
  • Based on the sliding isolation concrete LSS (liquid-storage structure), the specific seismic vulnerability is analyzed according to the general failure mode. In this study, 12 seismic inputs with different characteristics are used, and their acceleration peak values are modulated. By inputting these waves to the sliding isolation concrete storage structure, the finite-element models of different concrete rectangular LSSs are obtained and analyzed, and the failure probabilities are obtained according to the IDA (incremental dynamic analysis) curves of the structure. The results show that when the seismic acceleration peak value gradually increases from 0.1 g to 1.0 g, the failure probability of LSS gradually increases with the increase in friction coefficient. However, the failure probability of a sliding isolation LSS is less than 100% and far less than the failure probability of a non-isolated rectangular LSS, which shows that an isolated liquid storage structure continues working under a big earthquake. Thus, the sliding isolation for the concrete LSS has a significant damping effect.