• Title/Summary/Keyword: Storage coefficient

Search Result 470, Processing Time 0.026 seconds

The Study on the Performance of the Fuel Cell Driven Compound Source Hybrid Heat Pump Heating and Cooling System to Large Community Building (대형 Community 건물의 연료전지 구동 복합열원 하이브리드 히트펌프 냉.난방 시스템 성능 해석)

  • Byun, Jae-Ki;Jeong, Dong-Hwa;Choi, Young-Don
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.82-87
    • /
    • 2007
  • In the present study, the simulation on the annual performance evaluation of a renewable energy systems with fuel cell driven compound source hybrid heat pump systems is applied to the heating and cooling of large community building. The large community building has the economical advantage to apply heat pump cooling and heating systems the long period operation. If air and ground source hybrid heat pump systems are combined, COP of the system can be increased largely. Fuel cell driven compound source hybrid heat pump system can reduced the fuel cost as well as thermal storage tank sharply.

  • PDF

Drying and Low Temperature Storage System for Agricultural Products Using the Air to Air Heat Pump (I) - Drying Performance - (히트펌프를 이용한 농산물 건조 및 저온저장 시스템 (I) - 건조 성능 -)

  • Kang, Youn-Ku;Han, Chung-Su;Keum, D.H.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.1 s.120
    • /
    • pp.20-29
    • /
    • 2007
  • Korean farmers have purchased agricultural dryer and low temperature storage system apart. In this study, the system was designed and constructed to investigate the practical application possibility of the air to air heat pump as drying and low temperature storage system for agricultural products with providing basic data. The performance and drying characteristics of the system evaluated by drying red pepper. The value of coefficient of performance of the system for heating was from 1.8 to 2.2 when ambient air temperature varied from 13$^{\circ}C$ to 23$^{\circ}C$. For operating the heat pump as dryer for drying red pepper by setting three drying air temperature of 50, 55 and 60$^{\circ}C$, specific moisture extraction rates meaning amount of energy consumption for removing moisture of 1kg from red pepper were 1.095, 1.017 and 1.094 kg$_{water}$/kWh, respectively. The drying period up to moisture ratio of 0.02 were 31, 26 and 21 hour, respectively. The lightness, redness, yellowness and chroma differences of red pepper dried by the heat pump dryer were lowered than those of red pepper dried by conventional heated air dryer except for yellowness difference at drying air temperature of 60$^{\circ}C$.

PRML Detection for Asymmetric High-density Optical Storage System (고밀도 비선형 광 저장장치를 위한 새로운 부분응답 최대유사도 신호 검출 기술)

  • Lee, Kyu-Suk;Lee, Jae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10C
    • /
    • pp.927-932
    • /
    • 2006
  • We Propose a partial response maximum likelihood(PRML) detection method that improves the performance of the high-density optical storage system. It concurrently adjusts the coefficient of equalizer and reference values of branches in Viterbi detector. For the estimation of asymmetric channel characteristics by the tangential tilt, we exploit sync patterns in each data frame. The simulation result shows it improves the Performance up to 4dB at 10-6 BER compared to conventional adaptive PRML.

A Study on the Heat Pump-Latent Heat Storage Type (열펌프-잠열축열 온돌 시스템 연구)

  • 송현갑;박문수
    • Journal of Biosystems Engineering
    • /
    • v.26 no.4
    • /
    • pp.385-390
    • /
    • 2001
  • The Ondol system using both air-to-water heat pump and PCM(Phase Change Material) was constructed, and the effects of ambient air temperature on COP(Coefficient of Performance) of heat pump, the amount of heat supplied to the Ondol in the heating process, the heat storage in the PCM and the variation of Ondol room temperature were analyzed. The results from this study could be summarized as follows: 1. The COP of the heat pump (3 PS) was in proportion to the ambient air temperature. 2. When the ambient air temperature was varied between -10$^{\circ}C$ and -7$^{\circ}C$, the air temperature in the Ondol room was maintained between 16$^{\circ}C$ and 22$^{\circ}C$. As the results, it was certified that the heat pump-latent heat storage type Ondol system could be a comfortable residential heating system in the winter. 3. The maximum radiation and convection heat transfer from Ondol surface was 206.2 kJ/㎥hr and 82.6 kJ/㎥hr respectively. As the results, it could be confirmed that the radiation was major heat transfer mechanism for the Ondol room heating.

  • PDF

An Experimental Study on the heat transfer characteristics and performance of storage tanks with mantle heat exchanger (맨틀형 축열조의 열전달 성능 및 특성에 관한 실험적 연구)

  • Kang, Y.H.;Kwak, H.Y.;Yoon, H.G.;Yoo, C.G.;Yoon, H.S.;Chun, W.G.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.1
    • /
    • pp.61-69
    • /
    • 2001
  • The heat transfer characteristics of horizontal and vertical mantle heat storage tanks are studied in order to replace the tank-coil heat exchanger for application in thermosyphon solar water heaters. In this study, 5 mantle storage tanks with different geometric shape are manufactured into stainless steel and each tank is tested. For the test, The inlet flow rate of the heat transfer fluid is maintained 1.2 lpm consistently. The heat transfer fluid temperature through the mantle is $70{\pm}1^{\circ}C$. The temperatures of 26 points included the ambient temperature are measured at every one minute. The measured data are used to calculate the overall heat transfer coefficient(UA) using the LMTD(Log Mean Temperature Difference) method and it is used on the analysis of the heat transfer characteristics to search for optimum arrangement.

  • PDF

Evaluation of Insulation Performance and Structural Integrity of an IMO Type C LNG Storage Tank (IMO Type C LNG 저장 탱크의 단열성능 및 구조적 건전성 평가)

  • Park, Heewoo;Park, Jinseong;Cho, Jong-Rae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.1-7
    • /
    • 2021
  • Restrictions on the emissions of nitrogen oxides, sulfur oxides, carbon dioxide, and particulate matter from marine engines are being tightened. Each of these emissions requires different reduction technologies, which are costly and require many pieces of equipment to meet the requirements. Liquefied natural gas (LNG) fuel has a great advantage in reducing harmful emissions emitted from ships. Therefore, the marine engine application of LNG fuel is significantly increasing in new ship buildings. Accordingly, this study analyzed the internal support structure, insulation type, and fuel supply piping system of a 35 m3 International Maritime Organization C type pressurized storage tank of an LNG-fueled ship. Analysis of the heat transfer characteristics revealed that A304L stainless steel has a lower heat flux than A553 nickel steel, but the effect is not significant. The heat flux of pearlite insulation is much lower than that of vacuum insulation. Moreover, the analysis results of the constraint method of the support ring showed no significant difference. A553 steel containing 9% nickel has a higher strength and lower coefficient of thermal expansion than A304L, making it a suitable material for cryogenic containers.

Prismatic-core advanced high temperature reactor and thermal energy storage coupled system - A preliminary design

  • Alameri, Saeed A.;King, Jeffrey C.;Alkaabi, Ahmed K.;Addad, Yacine
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.248-257
    • /
    • 2020
  • This study presents an initial design for a novel system consisting in a coupled nuclear reactor and a phase change material-based thermal energy storage (TES) component, which acts as a buffer and regulator of heat transfer between the primary and secondary loops. The goal of this concept is to enhance the capacity factor of nuclear power plants (NPPs) in the case of high integration of renewable energy sources into the electric grid. Hence, this system could support in elevating the economics of NPPs in current competitive markets, especially with subsidized solar and wind energy sources, and relatively low oil and gas prices. Furthermore, utilizing a prismatic-core advanced high temperature reactor (PAHTR) cooled by a molten salt with a high melting point, have the potential in increasing the system efficiency due to its high operating temperature, and providing the baseline requirements for coupling other process heat applications. The present research studies the neutronics and thermal hydraulics (TH) of the PAHTR as well as TH calculations for the TES which consists of 300 blocks with a total heat storage capacity of 150 MWd. SERPENT Monte Carlo and MCNP5 codes carried out the neutronics analysis of the PAHTR which is sized to have a 5-year refueling cycle and rated power of 300 MWth. The PAHTR has 10 metric tons of heavy metal with 19.75 wt% enriched UO2 TRISO fuel, a hot clean excess reactivity and shutdown margin of $33.70 and -$115.68; respectively, negative temperature feedback coefficients, and an axial flux peaking factor of 1.68. Star-CCM + code predicted the correct convective heat transfer coefficient variations for both the reactor and the storage. TH analysis results show that the flow in the primary loop (in the reactor and TES) remains in the developing mixed convection regime while it reaches a fully developed flow in the secondary loop.

Growth Modelling of Listeria monocytogenes in Korean Pork Bulgogi Stored at Isothermal Conditions

  • Lee, Na-Kyoung;Ahn, Sin Hye;Lee, Joo-Yeon;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.35 no.1
    • /
    • pp.108-113
    • /
    • 2015
  • The purpose of this study was to develop predictive models for the growth of Listeria monocytogenes in pork Bulgogi at various storage temperatures. A two-strain mixture of L. monocytogenes (ATCC 15313 and isolated from pork Bulgogi) was inoculated on pork Bulgogi at 3 Log CFU/g. L. monocytogenes strains were enumerated using general plating method on Listeria selective medium. The inoculated samples were stored at 5, 15, and $25^{\circ}C$ for primary models. Primary models were developed using the Baranyi model equations, and the maximum specific growth rate was shown to be dependent on storage temperature. A secondary model of growth rate as a function of storage temperature was also developed. As the storage temperature increased, the lag time (LT) values decreased dramatically and the specific growth rate of L. monocytogenes increased. The mathematically predicted growth parameters were evaluated based on the modified bias factor ($B_f$), accuracy factor ($A_f$), root mean square error (RMSE), coefficient of determination ($R^2$), and relative errors (RE). These values indicated that the developed models were reliably able to predict the growth of L. monocytogenes in pork Bulgogi. Hence, the predictive models may be used to assess microbiological hygiene in the meat supply chain as a function of storage temperature.

Prediction of Shelf-life and Quality Changes of Dried Noodle During Storage Period (저장기간에 따른 건면의 품질변화 및 유통기간의 예측)

  • 이성갑;이근보;손종연
    • Korean journal of food and cookery science
    • /
    • v.15 no.2
    • /
    • pp.127-132
    • /
    • 1999
  • Dried noodles (somyon) were stored for 7 months at 25, 35 and 45$^{\circ}C$, and changes of water activity, amylograms and color of dried noodle at 4 week intervals were comparatively analyzed. The water activities during storage period were 0.43∼0.56 at all storage temperature. The breakdown of dried noodle by RVA(rapid visco analyser) increased as storage period increased. Color difference ($\Delta$E) was chosen for quality index due to the highest correlation coefficient between sensory score and color difference. The shelf-life of dried noodle was estimated from change of color, which was linearly increased as the storage period increased. The activation energy and Q$\sub$10/ value for color difference were 75.21 kJ/mol and 2.76 at 25$^{\circ}C$, respectively. Shelf-life of dried noodle at 25 were 27.9 months, respectively.

  • PDF

Thermal Performance of the Storage Brick Containing Microencapsulated PCM (상변화형 미세캡슐을 함유한 축열블럭의 열성능 특성)

  • Lee, D.G.;Chun, W.G.;Kang, Y.H.;Kwak, H.Y.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.23-28
    • /
    • 1999
  • The thermal performance of storage brick, containing microencapsulated PCM(phase change material), was investigated for utilization as a floor heating system. Sodium acetate trihydrate($CH_3COONa{\cdot}3H_2O$) was selected for the PCM and was encapsulated. The thermal storage brick was manufactured with mixing cement mortar having 10%, 20% PCM contents, respectively. Four different flow rates and three different cooling temperatures was used in this work for analyzing the heat charging and discharging characteristics of the thermal storage brick. The result showed that cycle time was shortened as the PCM content was increased and as the mass flow rate was increased. The same effect was obtained when the cooling temperature was decreased. For each thermal storage brick the overall heat transfer coefficient(U-value) was constant for a 0% brick, but was increased with time for the bricks containing microencapsulated PCM.

  • PDF