• Title/Summary/Keyword: Storage coefficient

Search Result 470, Processing Time 0.027 seconds

Re-Analysis of Clark Model Based on Drainage Structure of Basin (배수구조를 기반으로 한 Clark 모형의 재해석)

  • Park, Sang Hyun;Kim, Joo Cheol;Jeong, Dong Kug;Jung, Kwan Sue
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2255-2265
    • /
    • 2013
  • This study presents the width function-based Clark model. To this end, rescaled width function with distinction between hillslope and channel velocity is used as time-area curve and then it is routed through linear storage within the framework of not finite difference scheme used in original Clark model but analytical expression of linear storage routing. There are three parameters focused in this study: storage coefficient, hillslope velocity and channel velocity. SCE-UA, one of the popular global optimization methods, is applied to estimate them. The shapes of resulting IUHs from this study are evaluated in terms of the three statistical moments of hydrologic response functions: mean, variance and the third moment about the center of IUH. The correlation coefficients to the three statistical moments simulated in this study against these of observed hydrographs were estimated at 0.995 for the mean, 0.993 for the variance and 0.983 for the third moment about the center of IUH. The shape of resulting IUHs from this study give rise to satisfactory simulation results in terms of the mean and variance. But the third moment about the center of IUH tend to be overestimated. Clark model proposed in this study is superior to the one only taking into account mean and variance of IUH with respect to skewness, peak discharge and peak time of runoff hydrograph. From this result it is confirmed that the method suggested in this study is useful tool to reflect the heterogeneity of drainage path and hydrodynamic parameters. The variation of statistical moments of IUH are mainly influenced by storage coefficient and in turn the effect of channel velocity is greater than the one of hillslope velocity. Therefore storage coefficient and channel velocity are the crucial factors in shaping the form of IUH and should be considered carefully to apply Clark model proposed in this study.

Analysis of Impact Acoustic Property of Apple Using Piezo-Polymer Film Sensor (고분자 압전 박막 센서를 이용한 사과의 충격 음파 특성 분석)

  • Kim, Man-Soo;Lee, Sang-Dae;Park, Jeong-Hak;Kim, Ki-Bok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.144-150
    • /
    • 2008
  • In this study, the PVDF (polyvinylidene fluoride) piero-film sensor was applied to measure the internal quality of apple. The developed sensor detected the response signal through apple after mechanical impact on the surface of apple. The acoustical parameters at time domain such as rise time (RT), ring down count (RC), energy (EN), event duration (ED) and peak amplitude (PA) and acoustical parameter at frequency domain such as spectral density (SE) were analyzed. The size of waveform decreased as storage time of apple increased. The frequency at maximum magnitude was shifted to lower frequency band according to the storage time. The acoustical parameters showed strong relationship with storage time. The multiple linear regression equation was developed to estimate storage time of apple using the acoustical parameters at time domain and its coefficient of determination was 0.97. The internal quality of apple according to storage time is predictable using developed PVDF sensor and acoustical parameters defined in this study.

Changes in Physicochemical Properties of Industry-type Kochujang during Storage (공장산 고추장의 저장기간중 이화학적 특성의 변화)

  • Jung, Sung-Won;Kim, Young-Ho;Koo, Min-Seon;Shin, Dong-Bin;Chung, Kun-Sub;Kim, Young-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.403-410
    • /
    • 1994
  • Changes in physical and chemical characteristics of industry-type kochujang were investigated during 105 days of storage at $37^{\circ}C$. Reducing sugar content of kochujang decreased rapidly up to the 15th day of storage and then decreased slowly thereafter. Total free amino acid contents decreased by 22.3% after 60 days and by 35% after 90 days of storage. The activities of amylase and protease did not show any significant changes, however, the activity of neutral protease increased slightly. The moisture content and water activity of the kochujang decreased linealy during storage and the correlation coefficient between the moisture content and water activity showed 0.964. Apparent viscosity of kochujang increased with an increase in storage time. It was found that water activity was more responsible for the increase of apparent viscosity than water content.

  • PDF

Estimation of the Hapcheon Dam Inflow Using HSPF Model (HSPF 모형을 이용한 합천댐 유입량 추정)

  • Cho, Hyun Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.5
    • /
    • pp.69-77
    • /
    • 2019
  • The objective of this study was to calibrate and validate the HSPF (Hydrological Simulation Program-Fortran) model for estimating the runoff of the Hapcheon dam watershed. Spatial data, such as watershed, stream, land use, and a digital elevation map, were used as input data for the HSPF model. Observed runoff data from 2000 to 2016 in study watershed were used for calibration and validation. Hydrologic parameters for runoff calibration were selected based on the user's manual and references, and trial and error method was used for parameter calibration. The $R^2$, RMSE (root-mean-square error), RMAE (relative mean absolute error), and NSE (Nash-Sutcliffe efficiency coefficient) were used to evaluate the model's performance. Calibration and validation results showed that annual mean runoff was within ${\pm}4%$ error. The model performance criteria for calibration and validation showed that $R^2$ was in the rang of 0.78 to 0.83, RMSE was 2.55 to 2.76 mm/day, RMAE was 0.46 to 0.48 mm/day, and NSE was 0.81 to 0.82 for daily runoff. The amount of inflow to Hapcheon Dam was calculated from the calibrated HSPF model and the result was compared with observed inflow, which was -0.9% error. As a result of analyzing the relation between inflow and storage capacity, it was found that as the inflow increases, the storage increases, and when the inflow decreases, the storage also decreases. As a result of correlation between inflow and storage, $R^2$ of the measured inflow and storage was 0.67, and the simulated inflow and storage was 0.61.

An Analysis of Characteristic Parameters for the Design of Detention Pond in Urbanized Area (도시유역에서 저류지 설계를 위한 특성인자 분석)

  • Lee, Jae-Joon;Kim, Ho-Nyun;Kwak, Chang-Jae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.4 s.23
    • /
    • pp.37-47
    • /
    • 2006
  • Urban development results in increased runoff volume and flowrates and shortening in time of concentration, which may cause frequent flooding downstream. Flow retardation structures to limit adverse downstream effects of urban storm runoff are used. There are various types of flow retardation measures include detention basins, retention basins, and infiltration basins. In basic planning phase, a number of planning models of detention ponds which decide storage volume by putting main variables were used to design detention ponds. The characteristics of hydrological parameters $\alpha,\;\gamma$ which are used in planning models of detention pond were analyzed. In this study, detention ponds data of Disaster Impact Assessment report at 22 sites were analyzed in order to investigate correlation between characteristic of urban drainage basin parameter and characteristics of detention pond parameter due to urbanization effects. The results showed that storage volume was influenced by peak discharge ratio $\alpha$ more than runoff coefficient ratio $\beta$ and peak discharge ratio $\alpha$ was influenced by runoff coefficient ratio $\beta$ less than regional parameter n. Storage ratio was mainly influenced by duration of design rainfall in the case of trapezoidal inflow hydrograph such as Donahue et al. method.

The growth and characterization of Rb-doped $KNbO_3$ nonlinear optical crystals

  • Beh, C.Y.;Chong, T.C.;Kumagai, H.;Hirano, M.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.149-155
    • /
    • 1997
  • We have successfully grown colorless and transparent Rb-doped potassium niobate (KRN) single crystals using the top seeded solution growth(TSSG) technique. In our crystal growth experiments, the Rb doping concentrations within the melt range from 2-15 mol% relative to that of Nb$_2$O5. Atomic absorption measurements indicate that the Rb content in the KRN solid solution is rather low; the Rb segregation coefficient is found to be on the order of 0.05. It is believed that this is due to the relatively much larger Rb+ ionic radius compared to that of K+, rendering it more difficult for Rb to replace K in the KNbO$_3$(KN) host lattice. Preliminary single-pass second harmonic generation (SHG) experimental results indicate that there exists marginal improvement in the phase-matching temperature tolerance of KRN compared to that of pure Kn single crystals.

  • PDF

The Effects of Additives on the Thermal Properties of a Clathrate Compound (II) -The Case of Ethylene Glycol- (포접화합물의 열물성에 미치는 첨가제의 효과 (II) -TMA 물계 포접화합물에 Ethylene Glycol을 첨가한 경우-)

  • 정낙규;김진흥;김창오;김광일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.499-505
    • /
    • 2004
  • The objective of this study is to investigate the effect of supercooling repression on the TMA clathrate by adding ethylene glycol. For this purpose, phase change temperature, supercooling, specific heat, latent heat and rate of volume change were measured and evaluated experimentally for heat source temperatures of -6$^{\circ}C$, -7$^{\circ}C$, -8$^{\circ}C$. The results show that supercooling was decreased. Thus the experimental results are expected to be used for the increase of coefficient of performance of low temperature thermal storage system in the building.

Basic Properties of Dam Concrete using Fly Ash (Fly Ash를 이용한 댐 콘크리트의 기본 물성에 관한 연구)

  • 송영철;우상균;방기성;정원섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.619-624
    • /
    • 1999
  • The purpose of this study is to provide the optimum mix design of fly ash concrete to be placed at the concrete face rockfill dam for pumped storage power plats. The basic performance tests including compressive strength, modulus of elasticity, unit weight, coefficient of thermal expansion, shrinkage, adiabatic temperature rise and analysis of thermal stress were conducted for fly ash concrete. From this study, the fly ash concrete represented the better results in the aspects of basic performance and economy than ordinary portland cement concrete. Especially the concrete mix design containing 15% of fly ash is recommended to be applied in the construction of the concrete face rockfill dam for pumped storage power plants.

  • PDF

Permeability, crossflow and storativity effects in two-layer aquifer system with fractional flow dimension (분할유동차원 2층 대수층에서의 투수성, 층간흐름, 저류성의 효과)

  • 함세영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.81-84
    • /
    • 2000
  • Two-layer aquifer system with fractional flow dimension is composed of contiguous two layers: Layer 1 (lower layer) and Layer 2 (upper layer) with different permeability and specific storage each other. For this aquifer system, we assume that groundwater flow originates only from Layer 1 on the pumping well. The aquifer system considers wellbore storage and skin effects on the pumping well. Dimensionless drawdown curves for different flow dimensions are analyzed for different lambda (λ, crossflow coefficient) values, kappa ($textsc{k}$, permeability ratio between Layer 1 and Layer 2) values and omega ($\omega$, storativity ratio between Layer 1 and Layer 2) values. The curves for Layer 1 and Layer 2 show characteristic trend each other.

  • PDF

Identification of Mechanical Characteristics of Superconductor proceeding Bearing (초전도 저널베어링의 기계적 특성에 대한 연구)

  • Yun, H.J.;Han, Y.H.;Han, S.C.;Jeong, N.H.;Kim, J.;Sung, T.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2163-2166
    • /
    • 2004
  • For designing high Tc superconductor proceeding bearing(HTSJB) which is used on a flywheel energy storage system which requests the free of the bearing loss caused by the friction, it is necessary to understand the basic characteristics of the classical superconductor proceeding bearing because the mechanical characteristics of the HTSJB are identified by the magnetic relationships between the permanent magnet(PM) and the high Tc superconductor(HTS). In this paper, using the method, frozen image model, the force problems between the PM and the HTS were solved and then the dynamic characteristics of the rotor inside of the HTSJB can be expected in advance by using the basic characteristics between the PM and the HTS. The coefficient of friction of the HTSJB was measured in the vacuum environment. From the results, the mechanical characteristics of HTSJB can be identified using the numerical models.

  • PDF