• Title/Summary/Keyword: Storage capacity of battery

Search Result 234, Processing Time 0.024 seconds

Electrode characteristics of $AB_2$ type hydrogen storage alloy modified by Cr, La addition and fluorination ($AB_2$계 수소저장합금의 전극특성에 미치는 Cr, La 첨가 효과 및 표면 불화처리 효과)

  • Chang I.;Lee B. H.;Cho W. I.;Jang H.;Cho B. W.;Yun K. S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.45-51
    • /
    • 1998
  • [ $AB_2-type$ ] alloy, one kind of hydrogen storage alloys used as an anode of Ni-MH batteries, has large discharge capacity but has remaining problems regarding initial activation, cycle life and self-discharge. This study investigates the effects of Cr-addition and fluorination after La-addition on $Zr_{0.7}Ti_{0.3}V_{0.4}Mn_{0.4}Ni_{1.2}$, composition $AB_2-type$ alloy. EPMA and SEM surface analysis techniques were used and the crystal structure was characterized by XRD analysis. In addition, electrodes were fabricated out of the alloys and characterized by constant current cycling test, electrochemical impedance spectroscopy and potentiodynamic polarization. Cr-addition was found to be effective to cycle life and self-discharge but ineffective to initial activation due to formation of stable oxide film on surface. Fluorination after La-addition to the alloys improved initial activation remarkably due to formation of highly reactive particles on surface.

Manufacturing and Electrochemical Characteristics of SnO2/Li4Ti5O12 for Lithium Ion Battery (리튬이차전지용 SnO2/Li4Ti5O12의 합성 및 전기화학적 특성)

  • Yang, A-Reum;Na, Byung-Ki
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.265-270
    • /
    • 2015
  • In order to increase the capacity of the lithium ion battery, the capacity of the anode should be increased. SnO2 and Li4Ti5O12 were studied to replace the graphite as the anode materials. In this study, SnO2/Li4Ti5O12 composite materials were synthesized by solid-state method. The study reported here attempts to enhance the electrochemical capacity of Li4Ti5O12 through the incorporation of SnO2. Sn-based Li ion storage materials are loaded on Li4Ti5O12 surface. The SnO2/Li4Ti5O12 composite material has higher capacity than Li4Ti5O12, but the cycling capacity was decreased due to SnO2.

Optimal Cooling Operation of a Single Family House Model Equipped with Renewable Energy Facility by Linear Programming (신재생에너지 단독주택 모델 냉방운전의 선형계획법 기반 운전 최적화 연구)

  • Shin, Younggy;Kim, Eui-Jong;Lee, Kyoung-ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.12
    • /
    • pp.638-644
    • /
    • 2017
  • Optimal cooling operation algorithm was developed based on a simulation case of a single family house model equipped with renewable energy facility. EnergyPlus simulation results were used as virtual test data. The model contained three energy storage elements: thermal heat capacity of the living room, chilled water storage tank, and battery. Their charging and discharging schedules were optimized so that daily electricity bill became minimal. As an optimization tool, linear programming was considered because it was possible to obtain results in real time. For its adoption, EnergyPlus-based house model had to be linearly approximated. Results of this study revealed that dynamic cooling load of the living room could be approximated by a linear RC model. Scheduling based on the linear programming was then compared to that by a nonlinear optimization algorithm which was made using GenOpt developed by a national lab in USA. They showed quite similar performances. Therefore, linear programming can be a practical solution to optimal operation scheduling if linear dynamic models are tuned to simulate their real equivalents with reasonable accuracy.

SSR (Simple Sector Remapper) the fault tolerant FTL algorithm for NAND flash memory

  • Lee, Gui-Young;Kim, Bumsoo;Kim, Shin-han;Byungsoo Jung
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.932-935
    • /
    • 2002
  • In this paper, we introduce new FTL(Flash Translation Layer) driver algorithm that tolerate the power off errors. FTL driver is the software that provide the block device interface to the upper layer software such as file systems or application programs that using the flash memory as a block device interfaced storage. Usually, the flash memory is used as the storage devices of the mobile system due to its low power consumption and small form factor. In mobile system, the state of the power supplement is not stable, because it using the small sized battery that has limited capacity. So, a sudden power off failure can be occurred when we read or write the data on the flash memory. During the write operation, power off failure may introduce the incomplete write operation. Incomplete write operation denotes the inconsistency of the data in flash memory. To provide the stable storage facility with flash memory in mobile system, FTL should provide the fault tolerance against the power off failure. SSR (Simple Sector Remapper) is a fault tolerant FTL driver that provides block device interface and also provides tolerance against power off errors.

  • PDF

Design and Construction of 35 kWh Class Superconductor Flywheel Energy Storage System (35 kWh급 초전도 플라이휠 에너지 저장 시스템 설계 및 제작)

  • Jung, S.Y.;Han, Y.H.;Park, B.J.;Han, S.C.
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.60-65
    • /
    • 2012
  • A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. A 35 kWh class SFES module was designed and constructed as part of a 100kWh/1MW class SFES composed of three 35 kWh class SFES modules. The 35 kWh class SFES is composed of a main frame, superconductor bearings, a composite flywheel, a motor/generator, electro-magnetic bearings, and a permanent magnet bearing. The high energy density composite flywheel is levitated by the permanent magnet bearing and superconductor bearings, while being spun by the motor/generator, and the electro-magnetic bearings are activated while passing through the critical speeds. Each of the main components was designed to provide maximum performance within a space-limited compact frame. The 35 kWh class SFES is designed to store 35 kWh, with a 350 kW charge/discharge capacity, in the 8,000 ~ 12,000 rpm operational speed range.

Technologies for Next-Generation Metal-Ion Batteries Based on Aqueous Electrolytes (수계전해질기반 차세대 금속이온전지 기술)

  • D.O. Shin;J. Choi;S.H. Kang;Y.S. Park;Y.-G. Lee
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.1
    • /
    • pp.83-94
    • /
    • 2024
  • There have been continuous requirements for developing more reliable energy storage systems that could address unsolved problems in conventional lithium-ion batteries (LIBs) and thus be a proper option for large-scale applications like energy storage system (ESS). As a promising solution, aqueous metal-ion batteries (AMIBs) where water is used as a primary electrolyte solvent, have been emerging owing to excellent safety, cost-effectiveness, and eco-friendly feature. Particularly, AMIBs adopting mutivalence metal ions (Ca2+, Mg2+, Zn2+, and Al3+) as mobile charge carriers has been paid much attention because of their abundance on globe and high volumetric capacity. In this research trend review, one of the most popular AMIBs, zinc-ion batteries (ZIBs), will be discussed. Since it is well-known that ZIBs suffer from various (electro) chemical/physical side reactions, we introduce the challenges and recent advances in the study of ZIBs mainly focusing on widening the electrochemical window of aqueous electrolytes as well as improving electrochemical properties of cathode, and anode materials.

Operational Strategy for a BESS-based Microgrid (BESS 기반 마이크로그리드 운영전략)

  • Lee, Ha-Lim;Chun, Yeong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1666-1672
    • /
    • 2015
  • Small islands are quite adequate places where microgrid system with renewable sources can replace diesel engines as operation costs of diesel engine in most small islands are very high. To get the large amount of renewable energy, the microgrid system has very large capacity of renewable sources. The system with large capacity of renewable sources can meet the case when supplied energy is greater than the load and the fluctuation of source output is very large. The battery energy storage system can be a solution to stabilize the system with large capacity of renewable sources. In this case, BESS can be utilized as a master source for the synchronous operation of all sources including diesel engine, wind turbine and PV. The diesel generators can be used as a backup in case the BESS SOC goes below a certain level. In this paper, we suggest a novel unit commitment of diesel generators and operation schedule of pump for water supply service with the information of wind forecast, PV forecast, and load forecast. The proposed methods has been implemented and tested at the test bed in Gasa-Island.

The effect of substitution elements(Co, Cr, Fe) on the properties of Zr-based hydrogen storage alloy electrode for Ni-MH secondary battery (Ni-MH 2차 전지용 Zr계 수소저장합금전극의 특성에 미치는 치환원소(Co, Cr, Fe)의 영향)

  • Choi, Seung-Jun;Jung, So-Yi;Seo, Chan-Yeol;Choi, Jeon;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.3
    • /
    • pp.185-189
    • /
    • 1999
  • Effects of alloy modification with the $Zr_{0.6}Ti_{0.4}V_{0.4}Ni_{1.2}Mn_{0.4}$ alloy for an electrode use have been investigated. For the alloy composition, a part of Mn was substituted by Co, Cr and Fe. The experimental results showed that Co accelerated activation of alloy, and Fe and Cr improved the discharge capacity. These results agree with P-C-T curves of each alloy. But substituting Fe for Mn showed the decrease of the discharge capacity when discharged at high rate (60mA, about 1C rate). Considering both the discharge capacity and the high rate discharge property, $Zr_{0.6}Ti_{0.4}V_{0.4}Ni_{1.2}Mn_{0.3}Cr_{0.1}$ alloy was found to be the best alloy among the alloys subjected to the test.

  • PDF

The Effect of Mechanical Grinding or Electrochemical Properties of $CaNi_5$ Hydrogen Storage Alloy ($CaNi_5$ 수소저장합금의 전기화학 특성에 미치는 MG 처리 효과)

  • Lee C. R.;Kang S. G.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.106-111
    • /
    • 1999
  • The effect of the MG on the electrochemical charge-discharge properties of $CaNi_5$ hydrogen storage alloys was investigated under Ar and $H_2$ atmosphere. $CaNi_5$ alloy was partially decomposed to CaO and Ni phase during the MG process. The decomposition of $CaNi_5$ alloy was enhanced by the MG process which leads to crash and reformation of oxide layer on the alloy surface. As the MG process time increased, initial discharge capacity of the electrode was reduced, but the decay rate of the capacity compared to $CaNi_5$ alloys was slower. It may be described that the degradation of $MG-CaNi_5$ electrode was caused by the reduction of the reversible hydrogen reaction sites and increasing polarization resistance of hydrogen adsorption resulted from phase decomposition and disorder during the MG process, and/or by hydroxide formation during the electrochemical charge-discharge cycles.

Characteristics of Utility Transformer on Household Single-Phase ESS-PCS According to LC Filter Location (주택용 단상 ESS-PCS의 LC 필터위치에 따른 상용변압기의 특성)

  • Kim, Yong-Jung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.2
    • /
    • pp.101-105
    • /
    • 2018
  • Shortage of electric power occurs frequently along with increased electric power demand. ESS is a precaution to solve this issue. Household ESS has a capacity of approximately 3 kW/7 kWh. Household ESS batteries are typically designed with nominal voltages between 40 and 50 V. To connect household ESS with a 220 V AC system, low battery voltages in power conditioning system (PCS) should be boosted. To boost low battery voltage and match it with AC grid voltage, the use of a transformer for a commercial frequency can be considered. To attenuate switching harmonics of the household single-phase ESS-PCS, LC filter can be installed in two positions: on the primary side or on the secondary side of a transformer. A method has been used generally in single-phase inverters for the ESS-PCS. In another method, however, the output efficiency of the ESS-PCS may be decreased. Parasitic components of the transformer can affect voltage losses, when the square wave with the switching frequency in the ESS-PCS is passed through the transformer windings. In this work, the characteristics of the transformer according to the position of an LC filter are investigated for household single-phase ESS-PCS.