• Title/Summary/Keyword: Storage Method

Search Result 4,800, Processing Time 0.036 seconds

Development of Storage Management Method for Effective Operation of Small Dams (소규모 댐의 효과적 운영을 위한 저수관리 기법 개발)

  • Kim Phil-Shik;Kim Sun-Joo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.2
    • /
    • pp.27-35
    • /
    • 2006
  • Large dams are managed with operation standard and flood forecasting systems, while small dams do not have management method generally. Shortage of water resources and natural disasters due to drought and flood raised public concerns for management of small dams. Most of small dams are irrigation dams, which need diversified water uses. However, the lack of systematic management of small dams have caused serious water wastage and increased natural disasters. Storage management method and system were developed to solve these problems in small dams. The system was applied to Seongju dam for effective management. The storage management method was established considering hydrology simulation and statistical analysis using the system. This method can bring additional available water, even in the same conditions of the water demand and the supply conditions of watershed. It can improve the flood control capacity and water utilization efficiency by' the flexible operation of storage space.

Cold Energy Storage System Using Direct Contact Heat Transfer (직접 접촉식을 이용한 빙축열 시스템)

  • Lee, Y.P.;Yoon, S.Y.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.247-258
    • /
    • 1994
  • In this study, experimental investigations to find cold energy storage performance have been made for two different temperatures at condenser. Temperatures at inlet and outlet of condenser were measured to calculate global heat transfer coefficient of direct contact method in our cold energy storage system. Also storage performance by direct contact method was compared with that of Ice-On-Coil type ice storage which was calculated by analytic solution. Results show that, in the case of $-8.0^{\circ}C$ at condenser inlet, heat transfer coefficient of direct contact method is 3.25 times higher than that of conventional method and COP of system is improved by using R141b as refrigerant which produces gas hydrate and has higher phase change temperature than $0.0^{\circ}C$.

  • PDF

A Study on the Heat-Storage/-Release Characteristics of a Regenerative Heat Exchanger Utilizing the Reversible Thermochemical Reaction of $Ca(OH)_2/CaO$ ($Ca(OH)_2/CaO$ 계의 가역 열화학 반응열을 이용한 축열식 열교환기의 축열 및 방열특성에 관한 연구)

  • Lee, Soo-Kag;Kim, Hong-Jea;Lee, Jin-Kook
    • Solar Energy
    • /
    • v.9 no.2
    • /
    • pp.22-30
    • /
    • 1989
  • Since the energy storage method by means of the thermochemical reaction has no heat loss by separating the reactants under the storage period, it is remarked as one of promising means particularly for long-term heat storage. In this study, the heat-storage/-release characteristics of the reversible chemical reaction cycle, $Ca(OH)_2/CaO$, is numerically analysed by a mathematical modelling. As a result, the effectiveness of the heat exchanger by the chemical heat storage method is considerably higher than that by the sensible heat storage method. It is found that the major parameters, which determines the effectiveness of the heat exchanger, are the mass flow rate and inlet temperature of fluid, the residence time, etc.. The heat-storage/-release period can be controlled by changing the operation conditions. It is expected that the results obtained here will supply useful informations in designing a regenerative heat exchanger utilizing the thermochemical reaction.

  • PDF

An Analysis of the Optimal Thermal Storage Time of Air-Conditioning System with Slab Thermal Storage : An Analysis by the Gradient Method Algorithm (슬래브축열의 최적축열시간 산정 : 구배법 알고리즘에 의한 해석)

  • Jung, Jae-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.10
    • /
    • pp.702-709
    • /
    • 2008
  • In this paper, the optimal thermal storage time of an air-conditioning system with slab thermal storage in office building was analyzed on the basis of the gradient method algorithm. The sum of room temperature deviation and heat extraction rate was set to the criterion function. It was calculated that four hours is the optimal thermal storage time under the standard evaluation criterion. Furthermore, some case studies were executed by controlling ratio of weight functions of room temperature deviation and heat extraction rate in criterion function. It is possible to design many kinds of optimal operation of an air-conditioning system with slab thermal storage by controlling ratio of the weight functions in criterion function.

Bit Error Reduction for Holographic Data Storage System Using Subclustering (서브클러스터링을 이용한 홀로그래픽 정보저장 시스템의 비트 에러 보정 기법)

  • Kim, Sang-Hoon;Yang, Hyun-Seok;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.6 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • Data storage related with writing and retrieving requires high storage capacity, fast transfer rate and less access time. Today any data storage system cannot satisfy these conditions, however holographic data storage system can perform faster data transfer rate because it is a page oriented memory system using volume hologram in writing and retrieving data. System can be constructed without mechanical actuating part so fast data transfer rate and high storage capacity about 1Tb/cm3 can be realized. In this research, to correct errors of binary data stored in holographic data storage system, a new method for reduction errors is suggested. First, find cluster centers using subtractive clustering algorithm then reduce intensities of pixels around cluster centers. By using this error reduction method following results are obtained ; the effect of Inter Pixel Interference noise in the holographic data storage system is decreased and the intensity profile of data page becomes uniform therefore the better data storage system can be constructed.

Application of two-term storage function method converted from kinematic wave method (운동파법의 변환에 의한 2항 저류함수법의 적용)

  • Kim, Chang Wan;Chegal, Sun Dong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1057-1066
    • /
    • 2019
  • The storage function method is used as a flood prediction model for four flood control offices in Korea as a method to analyze the actual rainfall-runoff relationship with non-linearity. It is essential to accurately estimate the parameters of the storage function method for accurate runoff analysis. However, the parameters of the storage function method currently in use are estimated by the empirical formula developed by the limited hydrological analysis in 2012; therefore, they are somewhat inaccurate. The kinematic wave method is a method based on physical variables of watershed and channel and is widely used for rainfall-runoff analysis. By adopting the two-term storage function method by the conversion of the kinematic wave method, parameters can be estimated based on physical variables, which can increase the accuracy of runoff calculation. In this research, the reproducibility of the kinematic wave method by the two-term storage function method was investigated. It is very easy to estimate the parameters because equivalent roughness, which is an important physical variable in watershed runoff, can be easily obtained by using land use and land cover, and the physical variable of channel runoff can be easily obtained from the basic river planning report or topographic map. In addition, this research examined the applicability of the two-term storage function method to runoff simulation of Naechon Stream, a tributary of the Hongcheon River in the Han River basin. As a result, it is considered that more accurate runoff calculation results could be obtained than the existing one-term storage function method. It is expected that the utilization of the storage function method can be increased because the parameters can be easily estimated using physical variables even in unmeasured watersheds and channels.

Two dimensional variable-length vector storage format for efficient storage of sparse matrix in the finite element method (유한요소법에서 희소행렬의 효율적인 저장을 위한 2차원 가변길이 벡터 저장구조)

  • Boo, Hee-Hyung;Kim, Sung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.9
    • /
    • pp.9-16
    • /
    • 2012
  • In this paper, we propose the two dimensional variable-length vector storage format which can be used for efficient storage of sparse matrix in the FEM (finite element method). The proposed storage format is the method storing only actual needed non-zero values of each row on upper triangular matrix with the total rows N, by using two dimensional variable-length vector instead of $N{\times}N$ large sparse matrix of entire equation of finite elements. This method only needs storage spaces of the number of minimum 1 to maximum 5 in 2D grid structure and the number of minimum 1 to maximum 14 in 3D grid structure of analysis target. The number doesn't excess two times although involving index number. From the experimental result, we can find out that the proposed storage format can reduce the memory space more effectively, as the total number of nodes increases, than the existing skyline storage format storing maximum column height.

A Performance Analysis on a Chiller with Latent Thermal Storage According to Various Control Methods (잠열 축열식 칠러시스템의 제어 방식에 따른 성능 분석)

  • Kang, Byung Ha;Kim, Dong Jun;Lee, Choong Seop;Chang, Young Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.11
    • /
    • pp.592-604
    • /
    • 2017
  • A chiller, having a thermal storage system, can contribute to load-leveling and can reduce the cost of electricity by using electricity at night. In this study, the control experiments and simulations are conducted using both conventional and advanced methods for the building cooling system. Advanced approaches, such as the "region control method", divide the control region into five zones according to the size of the building load, and determines the cooling capacities of the chiller and thermal storage. On the other hand, the "dynamic programming method" obtains the optimal cooling capacities of the chiller and thermal storage by selecting the minimum-cost path by carrying out repetitive calculations. The "thermal storage priority method" shows an inferior chiller performance owing to the low-part load operation, whereas the chiller priority method leads to a high electric cost owing to the low utilization of thermal storage and electricity at night. It has been proven that the advanced control methods have advantages over the conventional methods in terms of electricity consumption, as well as cost-effectiveness. According to the simulation results during the winter season, the electric cost when using the dynamic programming method was 6.5% and 8.9% lower than that of the chiller priority and the thermal storage priority methods, respectively. It is therefore concluded that the cost of electricity utilizing the region control method is comparable to that of the dynamic programming method.

Study on Utilizing Resources in Environment-friendly City - Operation method of rain storage tank for using rainwater as multipurpose - (친환경 도시에서의 자원활용에 관한 연구 -빗물의 다목적 활용을 위한 빗물저장조의 운전방법 -)

  • 정용현
    • Journal of Environmental Science International
    • /
    • v.12 no.3
    • /
    • pp.359-366
    • /
    • 2003
  • Ecological society and energy conservative systems has become a subject of world wide attention. To examine the technologies of such systems as resource recycling society, this study is proposed for using rainwater as energy source and water resources in urban area. Useful informations for planning of utilizing rainfall as energy source, water resources, emergency water and controlling flood are discussed with model systems in urban area. It is calculated that the rate of utilizing rainwater, amounts of utilizing rainwater, substitution rate of supply water, amounts of overflow rainwater according to rain storage tank volume. By applying the past weather data, The optimum volume of rain water storage was calculated as 200m$^3$ which mean no benefits according to the increase of storage tank volumes. For optimum planing and control method at the model system, several running method of rainwater storage tank was calculated. The optimum operating method was the using weather data as 3hours weather forecast.

A Performance Analysis on a Heat pump with Thermal Storage Adopting Load Response Control Method (부하 대응 제어방식을 적용한 축열식 히트펌프시스템의 성능 해석)

  • Kim, Dong Jun;Kang, Byung Ha;Chang, Young Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.3
    • /
    • pp.130-142
    • /
    • 2018
  • We use heat pumps with thermal storage system to reduce peak usage of electric power during winters and summers. A heat pump stores thermal energy in a thermal storage tank during the night, to meet load requirements during the day. This system stabilizes the supply and demand of electric power; moreover by utilizing the inexpensive midnight electric power, thus making it cost effective. In this study, we propose a system wherein the thermal storage tank and heat pump are modeled using the TRNSYS, whereas the control simulations are performed by (i) conventional control methods (i.e., thermal storage priority method and heat pump priority method); (ii) region control method, which operates at the optimal part load ratio of the heat pump; (iii) load response control method, which minimizes operating cost responding to load; and (iv) dynamic programming method, which runs the system by following the minimum cost path. We observed that the electricity cost using the region control method, load response control approach, and dynamic programing method was lower compared to using conventional control techniques. According to the annual simulation results, the electricity cost utilizing the load response control method is 43% and 4.4% lower than those obtained by the conventional techniques. We can note that the result related to the power cost was similar to that obtained by the dynamic programming method based on the load prediction. We can, therefore, conclude that the load response control method turned out to be more advantageous when compared to the conventional techniques regarding power consumption and electricity costs.