• Title/Summary/Keyword: Stoner-Wohlfarth 모델

Search Result 5, Processing Time 0.014 seconds

Effects of Demagnetization Field in Patterned Micro-magnetic Film Elements (패턴 된 미크론 자기박막 소자에서의 자기소거장 효과분석)

  • Kim, Ki-Chul;Suh, Jeong-Dae;;Lee, C.S.;Song, Y.J.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.3
    • /
    • pp.103-108
    • /
    • 2003
  • A micromagnetic model and a Stoner-Wohlfarth model are used to analyze the effect of demagnetization field in patterned permalloy films. Permalloy films of 20 $\mu\textrm{m}$${\times}$(40 $\mu\textrm{m}$∼200 $\mu\textrm{m}$) are fabricated by DC magnetron sputtering and photo lithography. Measured magnetoresistance data of patterned permalloy films are compared with simulation results. The micromagnetic model gives a better agreement with the measured MR data than the Stoner-Wohlfarth model. Based on the simulation results, we propose a revised approximation formula for dernagnetization field in Stoner- Wohlfarth model for a few fm patterned magnetic films.

Magnetization Behavior of CoB/Ru/CoB Thin Film (CoB/Ru/CoB 박막 재료의 자화 거동 특성 분석)

  • Kim, Dong Young;Yoon, Seok Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.5
    • /
    • pp.154-158
    • /
    • 2013
  • We have analyzed the magnetization curves measures by using VSM and MOKE in synthetic antiferromagnetic coupled CoB/Ru/CoB thin film. The measured results were compared with calculated ones by Stoner-Wohlfarth model based on the magnetization behavior of two ferromagnetic layers ($M_1$, $M_2$). The calculated total magnetization ($M_{tot}=M_1+M_2$) and single layer magnetization($M_1$) behaviors were compared with measured results by using VSM and MOKE, respectively. The total magnetization curve ($M_{tot}=M_1+M_2$) showed reversible magnetization behavior with flopping field of about 50 Oe. While single layer magnetization ($M_1$) behaviors showed irreversible magnetization behavior in the field range of $H_F$ < H < $H_F$. These magnetization behaviors were explained by the angle difference between magnetization directions of two ferromagnetic layers in SAF sample.

Analysis of Reproducing Characteristics in Perpendicular Magnetic Recording System Using Preisach Model (Preisach 모델을 이용한 수직자기기록장치의 재생특성 해석)

  • 박관수;이향범;이택동;장평우
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.1
    • /
    • pp.50-55
    • /
    • 1992
  • Numerical method for analyzing the reading process in magnetic recording system is described. Hysteresis characteristics must be included in numerical analysis not only recording process but also reading process because of hysteretic behavior of recording media. Algorithm which is consisted of finite clement method for numerical analysis and Preisach model considered to be more appropriate method than Stoner-Wohlfarth model with spin curling mode for describing hysteresis characteristics is constructed. Equations to calculate waveform of reproduced voltage is proposed. Then, this is applied to perpendicular magnetic recording systems with pole type head and double layer media. Waveform of magnetic flux density and reproduced voltage induced in head coil is obtained. If the recording current increase in recording process, magnitude of reproduced voltage in reproducing process saturates. From this saturation curve, value of current which produce maximum voltage can be obtained.

  • PDF

MnIr Thickness Dependence of Torque Signals in CoFe/MnIr Thin Films (CoFe/MnIr 박막 재료에서 MnIr의 두께에 따른 토오크 신호 분석)

  • Kim, Dong Young;Yoon, Seok Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.5
    • /
    • pp.140-145
    • /
    • 2014
  • We analyzed the MnIr thickness dependence of torque signals measured in exchange coupled CoFe/MnIr ($t_{AF}$) bilayers. The measured torque signals were compared with calculated ones by Stoner-Wohlfarth model. The exchange coupling anisotropy $J_c$ was considered for the model calculation between ferromagnetic (F) and antiferromagnetic (AF) layers with uniaxial anisotropy constant of $K_F$ and $K_{AF}$, respectively. The rotational losses were appeared in the range of $0.5t_c$ < $t_{AF}$ < $t_c$ ($=J_c/K_{AF}$) by the unpinned AF layer. While, the unidirectional anisotropy ($J_k$) was caused by the pinned AF layer at $t_{AF}$ > $t_c$. The critical thickness of MnIr layer was $t_c$ = 3.4 nm in CoFe/MnIr bilayers. The rotational losses behavior as shown in $t_{AF}$ = 3 nm sample were explained by the random orientation of the easy axis of AF grains. The unidirectional anisotropy obtained from torque signal of $t_{AF}$ = 10 nm sample was $J_k=0.63J_c$. Thus, the unidirectional anisotropy can be enhanced up to $J_k=J_c$ by aligning the AF easy axis.

Magnetic Field Dependence of Torque Signals in Synthetic Antiferromagnetic Coupled CoFeB/Ru/CoFeB Thin Film (합성형 반강자성 결합 재료의 자기장 세기에 따른 토오크 신호 분석)

  • Yoon, Seok-Soo;Jun, Woo-Sang;Kim, Dong-Young
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.3
    • /
    • pp.83-87
    • /
    • 2011
  • We have analyzed the torque signals measured in synthetic antiferromagnetic (SAF) coupled CoFeB/Ru/CoFeB thin film, which signals were drastically changed at flopping field ($H_F$) and saturation field ($H_s$). The minimum value of negative uniaxial anisotropy constant ($-\;K_1$) was appeared at HF. The $-\;K_1$ was due to the zero net magnetization by the antiferromagnetic coupling between two ferromagnetic layers. Whereas, the biaxial anisotropy constant (K2) was induced in the field range of $H_F$ < H < $H_s$. The induced $K_2$ was originated from deviation angles between magnetization directions of two ferromagnetic layers. And at H > $H_s$, intrinsic uniaxial anisotropy constant of CoFeB layer was observed. These change of the anisotropy constant with magnetic field was explained by the magnetization process of two ferromagnetic layers based on Stoner-Wohlfarth model calculation for SAF thin film.