• Title/Summary/Keyword: Stone consolidation

Search Result 56, Processing Time 0.027 seconds

A Study on the Settlement Restraint of the Granular Compaction Pile (조립토 다짐말뚝의 침하저감방안에 관한 연구)

  • Kim, Seung-Wook;Lee, Duck-Won;Kim, Seo-Ryong;Ann, Jai-Gyoo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.336-342
    • /
    • 2005
  • Stone column or granular compaction pile have been used in widely during the several decades as a technique to reinforce soft cohesive soils and increase bearing capacity, accelerate consolidation settlement of the foundation soil. The bearing capacity of the granular compaction pile is governed mainly by the lateral confining pressure mobilized in the native soft soil to restrain bulging collapse of the granular pile. Therefore, the technique becomes unfeasible in soft, compressible clayey soils that do not provide sufficient lateral confinement. This paper presents the main results of numerical study of granular compaction pile which is partly mixed with lean concrete. 3D finite element analyses are performed with composite reinforced foundations by both granular compaction pile and partly mixed granular compaction pile with lean-mixed concrete.

  • PDF

Deterioration Characteristic Analysis for Stone Properties in the Taereung Royal Tomb of the Joseon Dynasty using Nondestructive Analysis (비파괴 분석을 활용한 조선왕릉 태릉 석조물의 손상특성 분석)

  • Lee, Myeonseong;Choie, Myoungju;Lee, Taejong;Chun, Yungun
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.2
    • /
    • pp.222-241
    • /
    • 2020
  • The Taereung Royal Tomb from the Joseon Dynasty is the tomb of Empress Munjeong, the second queen of King Jungjong, and it contains various types of stone artifacts. All of these stone artifacts were constructed using coarse- to medium-grained biotite granite. The major types of deterioration of the stone artifacts are identified as surface weathering and biological contaminants. Exfoliation (145 sculptures), granular decomposition (138 sculptures), and repair materials (156 sculptures), along with biological contaminant algae (154 sculptures), lichen (165 sculptures) and moss (97 sculptures), have a high occurrence frequency. In particular, it is deemed that immediate conservation treatment is required, as biological deterioration (algae) represents the most serious condition (grade 3 or higher in 94% of all stones), and it is thought that exfoliation and granulation decomposition are required for long-term conservation management. As a result of equo -tip hardness and ultrasonic measurement, more than 70% of stones were found to have very weak physical properties. Through hyperspectral analysis, organisms were shown to inhabit more than 80% of the surface of burial mound stone artifacts, and P (phosphorus), S (sulfur), Cl (chlorine), and Ca (calcium) were detected in this area. This is because Taereung Royal Tomb has been exposed to the outdoors for hundreds of years and has been weathered by physical, chemical, and biological factors. Therefore, among the stone artifacts in the Taereung Royal Tomb, those with high physical weathering grades are considered to require consolidation to reinforce them physically. Since organisms are highly likely to cause stone damage, they must be removed via dry and wet cleaning. In addition, in order to delay the reoccurrence of organisms following conservation treatment, it is necessary to regularly clean up the soil that has flowed into the burial mound, and to monitor conservation conditions over the long term.

Surface Characterization of Rocks after Treated with Developed Consolidants (개발 강화제 처리 전후의 암석 표면에 나타나는 특성 변화 연구)

  • Kim, Jeong-Jin;Jang, Yun-Deuk;Won, Jong-Ok;Kang, Young-Soo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.105-115
    • /
    • 2012
  • The consolidants have been widely used for the consolidation of decaying heritage stone surfaces. In this study, X-ray diffraction analysis, polarized and stereo-microscope and scanning electron microscope were used to study the surface characterization of granite, sandstone and marble, and to assess the efficiency and the effects of the developed condolidants in the field. The developed consolidants used in this experiment are 100%1T1G and 3%40nm/97%1T1G. The effects of consolidants are 3%40nm/97%1T1G${\gg}$100%1T1G in granite, 3%40nm/97%1T1G>100%1T1G in sandstone, and 3%40nm/97% 1T1G=100%1T1G in marble. The characteristics of rock surface when treated with consolidants show different result according to consolidantes type. This result of treating with consolidant can be used for the conservation of an decaying heritage stone.

Change in Mineralogical Characteristics of the Laminated Diatomaceous Siliceous Mudstone by the Treatment of Consolidants (엽층리가 발달된 규조토성 규질이암의 강화제에 의한 광물학적 특성변화)

  • Do, Jin Young
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.51-64
    • /
    • 2022
  • For effective preservation of the rocks, which bearing plant fossils at Gumkwangdong Formation, Pohang, the properties of rock and treatment of chemicals were examined in an artificial weathering test. The rocks are diatomaceous siliceous mudstone, which contain a small amount of smectite and has developed laminated layers. The rocks react with water, the d001 spacing of smectite was increased. On the one hand, the physical properties of the rock samples, such as surface hardness, improved after the application of ethyl silicate-based stone strengthener. On the other hand, the spacing of interlayer of swelling clay minerals decreased and spacing of laminae layer increased. When the ethyl silicate-based stone strengthener was applied after pretreatment with a swelling inhibitor, interlayer and spacing of laminae changes were similar to those when only the stone strengthener was treated. The effect of the swelling inhibitor was almost negligible. When the rocks that have been conserved with chemicals react with water, spacing of laminae has widened much, whereas when the rocks was in contact with moisture only, there was little change. In addition, if it is placed in the outdoor after conservation treatment, although it occurs slightly slower than the untreated rock, the separation of the lamination layer and the pulverization of the rock occur within a very short time. Consolidation is required to improve the physical properties of fossil rock, but when exposed to rain and undergoing freeze-thaw process, the effect is lost very quickly. Therefore, regardless of the chemical treatment, it is a priority to prevent direct rainfall contact with the rock.

Quantitative Evaluation for Effectiveness of Consolidation Treatment by Using the Chemical of Ethyl Silicate Series for the Sandstone in Yeongyang (영양 사암을 대상으로 한 에틸실리케이트 계열 처리제의 강화효과 평가)

  • Lee, Jang-Jon;Han, Min-Su;Song, Chi-Young;Jun, Byung-Kyu;Do, Min-Hwan
    • 보존과학연구
    • /
    • s.30
    • /
    • pp.125-136
    • /
    • 2009
  • Stone cultural heritages in Korea have a severe damages from chemical and biological weathering because most of them have been situated in outdoors without any suitable protection systems, and this in turn causes deformation and structural damage. To counteract these problems and increase durability, various kinds of conservation materials are used in the conservation and restoration treatments. However until now there are not many practical and technological experiments on this subject. This paper attempts quantitative evaluation of effectiveness about chemical of ethylsilicate based resin for sandstone in Yeongyang-gun. It takes a long time to evaluate durability and side effect after conservation materials treatment. So we use artificial weathering through freezing§ thawing experimental method. As a result of this experiment, porosity and absorptance increased, and elastic wave speed, elastic modules, unconfined compression strength and tensile strength decreased more than before. This study plans to make a scientific method study about weathering factor and mechanism, and to deduce correlation between artificial weathering and natural weathering.

  • PDF

Analysis of Bearing Capacity Characteristics on Granular Compaction Pile - focusing on the Model Test Results (조립토 다짐말뚝의 지지력 특성 분석 - 모형토조실험 결과를 중심으로)

  • Kang, Yun;Kim, Hong-Taek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.51-62
    • /
    • 2004
  • Granular compaction piles have the load bearing capacity of the soft ground increase and have the settlement of foundation built on the reinforced soil reduce. The granular compaction group piles also have the consolidation of the soft ground accelerate and have the liquefaction caused by earthquake prevent using the granular materials such as sand, gravel, stone etc. However, this method is one of unuseful methods in Korea. The Granular compaction piles are constructed by grouping it with a raft system. The confining pressure at the center of bulging failure depth is a major variable in relation to estimate for the ultimate bearing capacity of the granular compaction piles. Therefore, a share of loading is determined considering the effect of load concentration ratio between the granular compaction piles and surrounding soils, and varies the magnitude of the confining pressure. In this study, method for the determination of the ultimate bearing capacity is proposed to apply a change of the horizontal pressure considering bulging failure depth, surcharge and loaded area. Also, the ultimate bearing capacity of the granular compaction piles is evaluated on the basis of previous study on the estimation of the ultimate bearing capacity and compared with the results obtained from laboratory scale model tests. And using the result from laboratory model tests, it is studied increase effect of the bearing capacity on the granular compaction piles and variance of coefficient of consolidation for the ground.

  • PDF

Material Characteristics and Deterioration Diagnosis of the Pagoda of Buddhist Priest Jeongjin in Bongamsa Temple, Mungyeong, Korea (문경 봉암사 정진대사원오탑의 재질특성과 훼손도 진단)

  • Yi, Jeong-Eun;Lee, Chan-Hee;Han, Byeong-Il
    • Journal of Conservation Science
    • /
    • v.27 no.4
    • /
    • pp.357-369
    • /
    • 2011
  • The Bongamsa Jeongjindaesa Wonotap Pagoda (Treasure No. 171) constructed in the 10th century composed mainly of leucocratic granite with feldspar phenocryst. The major rock-forming minerals are quartz, orthoclase, plagioclase and some biotite. This pogoda is highly damaged physical weathering which are break-out, flakes, exfoliation and cracks. As a result of the infrared thermography on the surface of the pagoda, internal exfoliations occurred to cracks. Also, P-XRF analysis showed that Fe, S, Ca and Mn of concentration were so high in the discoloration parts. The coated part of red pigment has a high five times in Fe content than the fresh rock surface. This result suggests that material of red pigment is hematite. Ultrasonic velocity of the stone properties were from 831 to 2,457 m/s, but it measured velocity of less than 1,000m/s in part of damaged area. Therefore, we suggest for safety conservation for weathered parts of the pagoda, that is in want of rejoin and consolidation treatment about serious damage parts.

Evaluation of Efficiency after Treated with Consolidant of 1T1G_5 wt 0.08 % in the Field on Granite (화강암에 대한 강화제 1T1G_5 wt 0.08 %의 야외 처리 후 효율 평가)

  • Do, Jin Young;Jang, Yun Deug;Kim, Jeong Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.149-158
    • /
    • 2014
  • Consolidants were extended use for conservation of weathered stone heritage. Epoxy, acryl, isocyanate, and alkoxysilane consolidants are most commonly used products. Consolidant of 1T1G_5 wt 0.08 % that consists of T (TEOS: Tetraethyl Orthosilicate) and G (GPTMS: 3-Glycidoxy propyl trimethoxy silane) were used this study. A shore hardness values show increasing after treated with consolidant in granite. Surface brightness after treated with consolidant are changing slightly dark but turns the original color over time. Ultra-sonic velocity is increased after treated with consolidant but slightly reduced over time to remain constant. It has the advantage of being effective after treated with consolidant in granite and efficiency of consolidation increase with slow velocity before treated with consolidant.

Evaluation of Applicability of Platform Fill Horizontal Drain Pipe System (선재하 수평배수관망 시스템의 적용성 평가)

  • Yoo, Chanho;Han, Yeonjin;Kang, Sooyoung;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.3
    • /
    • pp.77-83
    • /
    • 2012
  • The most of horizontal drainages, which is composed of the aggregates made of sand and crushed stone, are used to improve the soft ground. However, where the aggregates are used as the horizontal drainage, it often brings about the delay of consolidation. For this reason, the horizontal drain pipe system is applied to properly improve the soft ground using a drainage pipe instead of horizontal drainage. This system is direct drain method for disappearing the excess porewater pressure which is caused by placing of fill on the soft ground. The large-scale field test was conducted in order to evaluate the applicability and constructability of the horizontal drain pipe system. The settlement characteristics of improved ground with horizontal drain pipe system was observed. It is also compared to the conventional soft ground improvement method to confirm its effectiveness.

Optimum Design for Granular Compaction Group Piles Using the Genetic Algorithm (유전자 알고리즘을 이용한 조립토 다짐 군말뚝의 최적설계)

  • Kim, Hong-Taek;Hwang, Jung-Soon;Kim, Chan-Dong;Kang, Yun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.1
    • /
    • pp.13-25
    • /
    • 2004
  • Granular compaction piles increase the load bearing capacity of the soft ground and reduce the settlement of foundation built on the reinforced soil. The granular compaction group piles also accelerate the consolidation of the soft ground and prevent the liquefaction caused by earthquake using the granular materials such as sand, gravel, stone etc. However, this method is one of unuseful method in Korea. In the present study, the optimum locations of granular compaction group piles using genetic algorithm are proposed. The results were shown that the bearing capacity was increased in the case concentrated on the central part of the group piles. Also, the optimum design for total weight of granular compaction group piles was carried out in consideration of the economical efficiency and parametric studies were performed to examine the effects of parameters at the design of granular compaction group piles.

  • PDF