• Title/Summary/Keyword: Stokes 수

Search Result 532, Processing Time 0.028 seconds

Neural network model for turbulent jet (난류 제트 신경망 모델)

  • Choi, Seongeun;Hwang, Jin Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.247-247
    • /
    • 2022
  • 제트류는 복잡한 흐름 중 하나로 다양한 크기의 에디가 다양한 운동량을 가지고 있다. 이러한 제트류를 구현하기 위해서는 난류 운동 에너지 등 제트류의 특성을 잘 반영하여야 한다. 제트를 구현하기 위해서는 수리학적 모델, 현장 실험 등 많은 방법이 있으며, 본 연구에서는 상대적으로 공간, 시간적 비용이 적게 드는 수치해석 방법을 사용하여 연구를 진행하였다. 대표적인 수치해석방법에는 DNS(Direct Numerical Simulation), LES(Large Eddy Simulation), RANS(Reynolds Averaged Navier Stokes) 등이 있다. RANS는 시간 평균 흐름 특성만 산출하며 제트의 복잡성을 재현하는 데 한계가 있어, 본 연구는 DNS와 LES 모델을 이용하여 제트류를 구현하는 것에 초점을 맞추었다. DNS는 해당 격자에서 발생하는 모든 에디를 직접 해석 때문에 난류 모델링이 필요하지 않지만, 많은 수의 그리드가 필요하여 수치해석 시 소요시간이 긴 편이다. LES는 대규모 에디는 직접 해석하지만 일정 크기 이하의 소용돌이를 해석하기 위해서 모델이 필요하다. 따라서 서브 그리드 모델에 따라 약간 다른 결과를 보인다. 이러한 문제점을 해결하기 위해 본 연구에서는 LES의 기존 서브 그리드 모델을 사용하지 않고 신경망 모델로 학습한 DNS 결과를 활용하는 방법을 제안한다. 우선 DNS와 LES 모델을 사용하여 에너지 스펙트럼을 비교하여 서브 그리드 모델이 시작하는 파수를 찾는다. 이후 특정 파수 아래의 작은 에디를 모사할 적절한 신경망 모델을 결정하여 DNS의 작은 에디를 신경망 알고리즘이 모사할 수 있도록 학습시킨다. 이후 기존 서브 그리드 모델을 사용하지 않고 학습된 신경망 알고리즘을 사용한 LES 모델이 모사한 제트류와 실제 DNS 모델을 사용한 제트류를 비교 및 평가한다.

  • PDF

Wave Forces Acting on Large Vertical Circular Cylinder and Consequent Wave Transformations by Full-Nonlinear Analysis Method after Wave Breaking (강비선형해석법에 의한 대형연직원주구조물에 작용하는 쇄파후의 파력 및 파랑변형)

  • Lee, Kwang-Ho;Shin, Dong-Hoon;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.401-412
    • /
    • 2008
  • Simulations of three-dimensional numerical wave tank are performed to investigate wave force acting on a large cylindrical structure and consequent wave deformation, which are induced by bore after breaking waves. The numerical model is based on the three-dimensional Navier-Stokes equations with a finite-difference method combined with a volume of fluid(VOF) method, which is capable of tracking the complex free surface, including wave breaking. In order to promote wave breaking of the incident wave, the approach slope was built seaward of the structure with a constant slope and a large cylindrical structure was installed on a flat bed. The incident waves were broken on the approach slope or flat bed by its wave height. In the present study, all waves acting on the large cylindrical structure were limited to breaking bore after wave breaking. The effects of the position of the structure and the incident wave height on the wave force and wave transformations were mainly investigated with the concern of wave breaking. Further, the relations between the variation of wave energy by wave propagation after wave breaking and wave force acting on the structure were discussed to give the understanding of the full-linear wave-structure interactions in three-dimensional wave fields.

Numerical Study on the Observational Error of Sea-Surface Winds at leodo Ocean Research Station (수치해석을 이용한 이어도 종합해양과학기지의 해상풍 관측 오차 연구)

  • Yim Jin-Woo;Lee Kyung-Rok;Shim Jae-Seol;Kim Chong-Am
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.3
    • /
    • pp.189-197
    • /
    • 2006
  • The influence of leodo Ocean Research Station structure to surrounding atmospheric flow is carefully investigated using CFD techniques. Moreover, the validation works of computational results are performed by the comparison with the observed data of leodo Ocean Research station. In this paper, we performed 3-dimensional CAD modelling of the station, generated the grid system for numerical analysis and carried out flow analyses using Navier-Stokes equations coupled with two-equation turbulence model. For suitable free stream conditions of wind speed and direction, the interference of the research station structure on the flow field is predicted. Beside, the computational results are benchmarked by observed data to confirm the accuracy of measured date and reliable data range of each measuring position according to the wind direction. Through the results of this research, now the quantitative evaluation of the error range of interfered gauge data is possible, which is expected to be applied to provide base data of accurate sea surface wind around research stations.

Experimental Observation of the Settling Velocity of Coarse Particles and Comparative Analysis (조립입자 침강속도에 대한 실험적 관찰 및 비교분석)

  • Son, Moorak;Jang, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.10
    • /
    • pp.33-38
    • /
    • 2015
  • This study conducted experimental observations of the settling velocity of a coarse particle in water varying material type and particle size and compared the results with preexisting empirical equations. Three types of materials, which are polyacetal, glass and steel, were used in this study and the diameter of particle ranged from 1 mm to 20 mm. Experiment results showed that the settling velocity of coarse particle had a significant difference from Stokes equation which is known applicable for a fine particle smaller than $50{\mu}m$. In addition, the observed particle velocity showed a significant difference when compared with other empirical equations, which was proposed for estimating the settling velocity of a particle regardless of particle size, depending on the material type and particle size. The results from experimental observations indicated that the settling velocity of a coarse particle was relatively in smaller difference to other empirical equations for the particle size smaller than 3 mm, but as the size increased the difference in the settling velocity also increased. This study clearly showed that the settling velocity of a coarse particle velocity can be significantly different depending on particle size and density and the empirical equations may not reliably estimate the settling velocity of a coarse particle so that they should not be used as it is and a verification of them is necessarily before any use. The study results would provide a useful information for a better understanding of settling velocity of a particle in water.

A Case of Continuous Positive Airway Pressure Therapy in a Patient with Central Sleep Apnea and Heart Failure (중추성 수면 무호흡이 동반된 심부전 환자에서 지속적 상기도 양압술 적용 1례)

  • An, Jee Young;Kim, Shin Bum;Kang, Hyeon Hui
    • Sleep Medicine and Psychophysiology
    • /
    • v.24 no.2
    • /
    • pp.118-123
    • /
    • 2017
  • Central sleep apnea (CSA) is a highly prevalent comorbidity in patients with heart failure and may present in 25 to 40 percent of heart failure patients. Continuous positive airway pressure (CPAP) is the primary therapeutic option and effective in treatment of obstructive sleep apnea (OSA). In heart failure patients with CSA, several trials of CPAP showed a number of positive effects in heart failure treatment. A 58-year-old male visited the hospital because of dyspnea and he was diagnosed as heart failure with ischemic heart disease. He underwent coronary angiography and received percutaneous coronary intervention due to stenosis at the middle of left anterior descending coronary artery. However, dyspnea was not completely improved after treatment with percutaneous coronary intervention. The patient also experienced snoring and sleep apnea which worsened with symptom of dyspnea in the recent year. We suspected CSA and the patient underwent polysomnography to confirm whether sleep apnea was present. During the polysomnography, CSA with Cheyne-Stokes respiration (CSR) was observed and apnea-hypopnea index was 45.9/hr. The patient was treated with CPAP. After CPAP treatment, hypoxemia and CSA were resolved and dyspnea was improved with reducing NYHA class. We report a case successfully treated with clinical improvement by presuming CSA in a patient with heart failure.

Computational Simulation of Hydrocarbon Adsorption in a Packed Column (탄화수소 흡착 컬럼의 전산모사 특성)

  • Yoo, Kyung-Seun;Lee, Su-Jung;Kim, Ji-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.10-16
    • /
    • 2020
  • Computational simulations of adsorption columns were carried out to investigate the removal characteristics of VOCs from a laundry shop. n-Decane was selected as the representative component among the VOCs emitted, and the activity of the adsorbents, such as activated carbon, was evaluated using commercial CFD code. The mathematical framework was composed of continuity and Navier-stokes equations, and the simulation was performed using the Matlab program. The adsorption isotherms of LDF, Freundlich, and Langmuir were evaluated, and the adsorption amount of the adsorption isotherms with the adsorption parameter was compared. The simulation was carried out using a particle porosity, dispersion coefficient, particle density, bed diameter, and bed length of 0.79, 42.4 ㎠/min, 485 g/L, 2.0 cm, and 2.5 cm, respectively. The effect of the gas velocity, dispersion coefficient, and voidage on the adsorption amount was compared in the Langmuir adsorption isotherm. The simulation was carried out in the velocity range of 50 to 200 cm/min, dispersion coefficient range of 100 to 400 ㎠/min, and particle porosity range of 0.66 to 0.79. The simulation results of activated carbon with benzene coincided with the Langmuir isotherm. Three types of adsorption isotherm were compared under similar conditions, and the simulation results showed the efficient adsorption condition for hydrocarbons.

Lagrangian Finite Element Analysis of Water Impact Problem (강체-유체 충격문제에 대한 Lagrangian 유한요소 해석)

  • Bum-Sang Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.60-68
    • /
    • 1991
  • The updated Lagrangian Finite Element Method is introduced to analyse rigid body-fluid impact problem which is characterized by incompressible Navier-Stokes equations and impact-contact conditions between free surface and rigid body. For the convenience of numerical computation, velocity fields are splinted into vicous and pressure parts, and then the governing equations and boundary conditions are decomposed in accordance with the decomposition. However, Viscous stresses acting an the solid boundaries are neglected on the assumption that very small velocity gradients may occur during extremely small time interval of the impact. Four coded quadrilateral elements are used to discretize the space domain and the fully explicit time-marching algorithm is employed with a reasonably small time step. At the beginning of each time step, contact velocity of the rigid body is computed from the momentum balance between the body and the fluid. The velocity field is then computed to satisfy the discretized equations of motions and incompressibility and contact constraints as well as an exact free surface boundary condition. At the end of each time step, the fluid domain is updated from the velocity field. In the present time stepping numerical analysis, behaviour of the free surface near the body can be observed without any difficulty which is very important in the water impact problem. The applicability of the algorithm is illustrated by a wedge type falling body problem. The numerical solutions for time-varying pressure distributions and impact loadings acting ion the surface are obtained.

  • PDF

Development of Longitudinal Dispersion Coefficient Based on Theoretical Equation for Transverse Distribution of Stream-Wise Velocity in Open Channel : Part I. Theoretical Equation for Stream-Wise Velocity (개수로에서 흐름방향 유속의 횡분포 이론식에 기반한 종분산계수 개발 : I. 흐름방향 유속의 횡분포)

  • Baek, Kyong Oh
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.4
    • /
    • pp.291-298
    • /
    • 2015
  • The aim of this study is that a theoretical formula for estimating the one-dimensional longitudinal dispersion coefficient is derived based on a transverse distribution equation for the depth averaged stream-wise velocity in open channel. In "Part I. Theoretical equation for stream-wise velocity" which is the former volume of this article, the velocity distribution equation is derived analytically based on the Shiono-Knight Model (SKM). And then incorporating the velocity distribution equation into a triple integral formula which was proposed by Fischer (1968), the one-dimensional longitudinal dispersion coefficient can be derived theoretically in "Part II. Longitudinal dispersion coefficient" which is the latter volume of this article. SKM has presented an analytical solution to the Navier-Stokes equation to describe the transverse variations, and originally been applied to straight and nearly straight compound channel. In order to use SKM in modeling non-prismatic and meandering channels, the shape of cross-section is regarded as a triangle in this study. The analytical solution for the velocity distribution is verified using Manning's equation and applied to velocity data measured at natural streams. Although the velocity equation developed in this study do not agree well with measured data case by case, the equation has a merit that the velocity distribution can be calculated only using geometric data including Manning's roughness coefficient without any measured velocity data.

Two and Three Dimensional Analysis about the Reflection Coefficient by the Slit Caisson and Resulting Wave Pressure Acting on the Structure (슬리트케이슨제에 의한 반사율과 구조물에 작용하는 파압에 관한 2차원 및 3차원해석)

  • Lee, Kwang-Ho;Choi, Hyun-Seok;Baek, Dong-Jin;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.374-386
    • /
    • 2010
  • Recently, the theoretical and experimental research is being made actively in control character of waves of perforated-wall caisson breakwater like the slit caisson. This study showed that the character of reflection coefficient and the wave pressure acting on the front and inner of slit caisson were estimated in two and three dimensional numerical wave flume and compared each other. The numerical experiment was set and conducted by various cases as to a variety of wave steepness under 7 sec, 9 sec, 11sec and 13 sec period condition. In this study using a 2 and 3 dimensional numerical wave flume, it applied the Model for the immiscible two-phase flow based on the Naveir-Stokes Equations. This technique can easily reproduce a complicated physical phenomenon more than others and organize the program simply. According to the results of the experiment, the reflection coefficient was estimated high in short-period waves. However, 2-dimensional numerical experiment and 3-dimensional numerical experiment were the same in case of the long-period waves and high wave steepness. And to conclude in case of short-period waves the pressures were a relatively small difference between the two, but there was a big gap in longperiod waves and high wave steepness.

A Study on Performance Characteristics of Horizontal Axis Tidal Turbine Considering Nose Shape, Angle of Inflow and Tower Structure (수평축 조류발전 터빈의 노즈 형상 및 유입각도, 타워 구조물의 영향을 고려한 터빈 성능특성 분석)

  • Heo, Man-Woong;Kim, Dong-Hwan;Yi, Jin-Hak
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • In this study, three-dimensional fluid flow analyses have been performed in order to investigate the performance characteristics of a horizontal axis tidal turbine (HATT) by solving three-dimensional Reynolds-averaged Navier-Stokes equations utilizing the shear-stress-transport turbulence model. The computational domain for the flow analysis has been composed of hexahedral grids, and the grid dependency test has been carried out so as to determine the optimum grid size. Performance characteristics of the HATT have been investigated in consideration of the effects of hub nose geometry, inflow angle, and the tower. It has been found that the power output can be enhanced along with an increase of the ratio of the length to the diameter of the turbine nose, and the power of HATT has been reduced by approximately 10% when the primary fluid flow had an inflow angle of 15°. The power output of downstream HATT is found to be lower than that of the upstream HATT by about 1%.