• Title/Summary/Keyword: Stoichiometric Air-Fuel Ratio

Search Result 47, Processing Time 0.023 seconds

Air-Fuel Ratio Control of Automobile Engines in Steady States by Neural Networks (신경회로망을 이용한 정상상태에서의 자동차 엔진의 공연비제어)

  • 최종호;원영준;고상근;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2119-2125
    • /
    • 1992
  • An air-fuel ratio control method is studied to keep the air-fuel ratio of the exhaust gas in the neighborhood of the stoichiometric air-fuel ratio to maximize the conversion efficiency of the three-way catalytic converter. Estimators, which estimate the air-fuel ratio of the exhaust gas, are proposed using neural networks to overcome the limit of the presently used bang-bang type exhaust gas oxygen sensor. Using these estimators, PI controller for air-fuel ratio control is designed and is experimented for an automobile engine. The proposed controller reduces the variation of air-fuel ratio of the exhaust gas from the stoichiometric air-fuel ratio by 50%-75% when compared to the existing controller.

Operational Optimization of Anodic/cathodic Utilization for a Residential Power Generation System to Improve System Power Efficiency (가정용 연료전지 시스템의 전기 효율 향상을 위한 연료/공기 이용률 운전 최적화)

  • Seok, Donghun;Kim, Minjin;Sohn, Young-Jun;Lee, Jinho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.373-385
    • /
    • 2013
  • To obtain higher power efficiency of Residential Power Generation system(RPG), it is needed to operate system on optimized stoichiometric ratios of fuel and air. Stoichiometric ratios of fuel/air are closely related to efficiency of stack, reformer and power consumption of Balance Of Plant(BOP). In this paper, optimizing stoichiometric ratios of fuel/air are conducted through systematic experiments and modeling. Based on fundamental principles and experimental data, constraints are chosen. By implementing these optimum values of stoichiometric ratios, power efficiency of the system could be maximized.

Optimization of Anodic/cathodic Utilization for a Residential Power Generation System (가정용 연료전지 시스템의 연료/공기 이용률 최적화)

  • Seok, Donghun;Kim, Minjin;Lee, Jinho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.93.1-93.1
    • /
    • 2011
  • To obtain higher power efficiency of Residential Power Generation System(RPG), it is needed to operate system on optimized stoichiometric ratio of fuel and air. In this paper, optimizing stoichiometric ratio of fuel/air is conducted through systematic experiments and modeling. Based on fundamental principles and experimental data, constraints are chosen. Using these stoichiometric ratios as decision variables, maximum power efficiency of system could be found. As a result of research, power efficiency of RPG system is improved.

  • PDF

Construction of Map for Transient Condition of a Sl Engine and Refinement of Intake Air Model & Fuel Model (가솔린 엔진의 비정상 상태에 대한 Map 구성과 공기 및 연료 모델 개선)

  • 심연섭;강태성;강승표;고상근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.1-8
    • /
    • 2002
  • For gasoline engines, a three-way catalytic converter that has the maximum efficiency at stoichiometric air/fuel ratio is used to clean up the exhaust gas. So a precise air/fuel ratio control is necessary to maximize the catalytic conversion efficiency, For a transient condition, a fred-forward air/fuel ratio control method that estimates the air mass inducted into a cylinder is being used. In this study, a fuel injection map that makes an accurate air/fuel ratio control possible was constructed for the very same transient condition. For the same condition above, intake air model and fuel model were refined so that fuel injection values based on air mass through a throttle valve and intake manifold pressure are equal to the map values.

A Study of $NO_x$ Reduction in Stage Combustion (단계적 연소의 $NO_x$ 저감에 대한 연구)

  • 채재우;전영남;이운영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1556-1571
    • /
    • 1993
  • Nitrogen oxides ($NO_x$) are air pollutants which are generated from the combustion of fossil fuels. Stage combustion is an effective method to reduce $NO_x$ emissions. The effects of $NO_x$ reduction by stage combustion in a pilot scale combustor(6.6kW) have been investigated using propane gas flames laden with NH$_{3}$ as Fuel-N. The results in this study are follows; (1) $NO_x$ emissions are dependent on the reducing environment of fuel-rich zone regardless of total air ratio. The maximum $NO_x$ reduction is at the stoichiometric ratio of 0.8 to 0.9 in the reducing zone. (2) $NO_x$ reduction is maximum when burnout air is injected at the point where the oxygen in reducing zone is almost consumed. (3) $NO_x$ reduction is dependent upon the temperature of reducing zone with best effect above 950.deg. C in the reducing zone. (4) The fuel stage combustion is more effective to reduce $NO_x$ formation in the wide range of stoichiometric ratio than two stage combustion. (5) The results of this study could be utilized mainly in a design strategy for low $NO_x$ emission from the combustion of high fuel-nitrogen in energy sources ratio than as an indication of the absolute levels of $NO_x$ which can be achieved by stage combustion techniques in large scale facilities.

Structure & operation of electronic fuel injection (전자제어식 연료분사장치의 구조와 작동)

  • 목희수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.13-23
    • /
    • 1986
  • The power of an international combustion engine depends on its ability to inhale air whether it is naturally aspirated or turbocharged. The use of fuel injection allows engine efficiency to be increased through a more even distribution of the air/fuel ratio throughout the engine's operation range. The theoretical value for complete combustion in an engine is commonly refered to as stoichiometric, which means that we require 14.7 parts of air to 1 part of gasoline. This stoichiometric ratio can be more closely maintained with electronically controlled fuel injection than it can with carburetion. Because of the greater efficiency of the engine using fuel injection, a horse power increase of at least 10% is produced over its carburetor version. In addition, better fuel economy and less exhaust emissions are also obtained.

  • PDF

Development of An Engine Modeling and an Engine Control Module for an LPG Engine (LPG 엔진 모델링 및 ECM 설계에 관한 연구)

  • 심한섭;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.1-9
    • /
    • 1999
  • Liquid Petroleum Gas (LPG) has been widely used for commercial light-duty vehicles worldwide. Since LPG has a higher octane number and a lower maximum combustion temperature than gasoline , it becomes more popular fuel for reducing exhaust emissions. In tihs study, mathematical models of air intake and fuel delivery system are presented, and a PI-controller is designed for air-fuel ratio control. Hardware and software of an engine control module (ECM) are designed for an LPG engine. The ECM is built using a Motorola MC68HC05. In order to control the air-fuel ratio at stoichiometry, the PI-control algorithm is implemented in the ECM. The experiment results show the proto LPG ECM and its control scheme perform well to meet the stoichiometric air-duel ratio requirement.

  • PDF

Injector Control Logic for a Liquid Phase LPG Injection Engine (액상 LPG 분사 엔진의 인젝터 제어 로직)

  • 조성우;민경덕
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.15-21
    • /
    • 2003
  • The liquid phase LPG injection engine is a new technology to make good use of LPG as a clean energy. However, it is difficult to precisely control air/fuel ratio in the system because of variation of fuel composition, change of temperature and flash boiling injection mechanism. This study newly suggests an injector control logic for liquid phase LPG injection systems. This logic compensates a number of effects such as variations of density, stoichiometric air/fuel ratio, injection delay time, injection pressure, release pressure which is formed by flash boiling of fuel at nozzle exit. This logic can precisely control air/fuel ratio with only two parameters of intake air flow rate and injection pressure without considering fuel composition, fuel temperature.

Burning processes on cement manufacture (시멘트의 소성)

  • Lim Eung Keuk
    • Cement Symposium
    • /
    • no.1
    • /
    • pp.18-22
    • /
    • 1973
  • A historical review of burning processes on cement manufacture has been made regarding specially to heat efficiency. In addition to these processes, two examples of stoichiometric calculation dealing with combustion such as air fuel ratio and excess air h

  • PDF

Dyamic Modeling and Analysis of Air Supply System for Vehicular PEM Fuel Cell (고분자 전해질형 연료전지 자동차의 급기 시스템의 동적 모델링 및 분석)

  • Jang, HyunTak
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.3
    • /
    • pp.175-186
    • /
    • 2004
  • In this paper, we developed the dynamic model of a fuel cell system suitable for controller design and system operation. The transient phenomena captured in the model include the flow characteristics and inertia dynamics of the compressor, the intake manifold filling dynamics, oxygen partial pressures and membrane humidity on the fuel cell voltage. In the simulations, we paid attention to the transient behavior of stack voltage and compressor pressure, stoichiometric ratio. Simulation results are presented to demonstrate the model capability. For load current following, stack voltage dynamic characteristics are plotted to understand the Electro-chemistry involved with the fuel cell system. Compressor pressure and stoichiometric ratio are strongly coupled, and independent parameters may interfere with each other, dynamic response, undershoot and overshoot.