• Title/Summary/Keyword: Stock price prediction

Search Result 154, Processing Time 0.034 seconds

News based Stock Market Sentiment Lexicon Acquisition Using Word2Vec (Word2Vec을 활용한 뉴스 기반 주가지수 방향성 예측용 감성 사전 구축)

  • Kim, Daye;Lee, Youngin
    • The Journal of Bigdata
    • /
    • v.3 no.1
    • /
    • pp.13-20
    • /
    • 2018
  • Stock market prediction has been long dream for researchers as well as the public. Forecasting ever-changing stock market, though, proved a Herculean task. This study proposes a novel stock market sentiment lexicon acquisition system that can predict the growth (or decline) of stock market index, based on economic news. For this purpose, we have collected 3-year's economic news from January 2015 to December 2017 and adopted Word2Vec model to consider the context of words. To evaluate the result, we performed sentiment analysis to collected news data with the automated constructed lexicon and compared with closings of the KOSPI (Korea Composite Stock Price Index), the South Korean stock market index based on economic news.

Time Series Stock Prices Prediction Based On Fuzzy Model (퍼지 모델에 기초한 시계열 주가 예측)

  • Hwang, Hee-Soo;Oh, Jin-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.689-694
    • /
    • 2009
  • In this paper an approach to building fuzzy models for predicting daily and weekly stock prices is presented. Predicting stock prices with traditional time series analysis has proven to be difficult. Fuzzy logic based models have advantage of expressing the input-output relation linguistically, which facilitates the understanding of the system behavior. In building a stock prediction model we bear a burden of selecting most effective indicators for the stock prediction. In this paper information used in traditional candle stick-chart analysis is considered as input variables of our fuzzy models. The fuzzy rules have the premises and the consequents composed of trapezoidal membership functions and nonlinear equations, respectively. DE(Differential Evolution) identifies optimal fuzzy rules through an evolutionary process. The fuzzy models to predict daily and weekly open, high, low, and close prices of KOSPI(KOrea composite Stock Price Index) are built, and their performances are demonstrated.

Research on Determine Buying and Selling Timing of US Stocks Based on Fear & Greed Index (Fear & Greed Index 기반 미국 주식 단기 매수와 매도 결정 시점 연구)

  • Sunghyuck Hong
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.87-93
    • /
    • 2023
  • Determining the timing of buying and selling in stock investment is one of the most important factors to increase the return on stock investment. Buying low and selling high makes a profit, but buying high and selling low makes a loss. The price is determined by the quantity of buying and selling, which determines the price of a stock, and buying and selling is also related to corporate performance and economic indicators. The fear and greed index provided by CNN uses seven factors, and by assigning weights to each element, the weighted average defined as greed and fear is calculated on a scale between 0 and 100 and published every day. When the index is close to 0, the stock market sentiment is fearful, and when the index is close to 100, it is greedy. Therefore, we analyze the trading criteria that generate the maximum return when buying and selling the US S&P 500 index according to CNN fear and greed index, suggesting the optimal buying and selling timing to suggest a way to increase the return on stock investment.

A Study On Predicting Stock Prices Of Hallyu Content Companies Using Two-Stage k-Means Clustering (2단계 k-평균 군집화를 활용한 한류컨텐츠 기업 주가 예측 연구)

  • Kim, Jeong-Woo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.169-179
    • /
    • 2021
  • This study shows that the two-stage k-means clustering method can improve prediction performance by predicting the stock price, To this end, this study introduces the two-stage k-means clustering algorithm and tests the prediction performance through comparison with various machine learning techniques. It selects the cluster close to the prediction target obtained from the k-means clustering, and reapplies the k-means clustering method to the cluster to search for a cluster closer to the actual value. As a result, the predicted value of this method is shown to be closer to the actual stock price than the predicted values of other machine learning techniques. Furthermore, it shows a relatively stable predicted value despite the use of a relatively small cluster. Accordingly, this method can simultaneously improve the accuracy and stability of prediction, and it can be considered as the new clustering method useful for small data. In the future, developing the two-stage k-means clustering is required for the large-scale data application.

Prediction of the price for stock index futures using integrated artificial intelligence techniques with categorical preprocessing

  • Kim, Kyoung-jae;Han, Ingoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1997.10a
    • /
    • pp.105-108
    • /
    • 1997
  • Previous studies in stock market predictions using artificial intelligence techniques such as artificial neural networks and case-based reasoning, have focused mainly on spot market prediction. Korea launched trading in index futures market (KOSPI 200) on May 3, 1996, then more people became attracted to this market. Thus, this research intends to predict the daily up/down fluctuant direction of the price for KOSPI 200 index futures to meet this recent surge of interest. The forecasting methodologies employed in this research are the integration of genetic algorithm and artificial neural network (GAANN) and the integration of genetic algorithm and case-based reasoning (GACBR). Genetic algorithm was mainly used to select relevant input variables. This study adopts the categorical data preprocessing based on expert's knowledge as well as traditional data preprocessing. The experimental results of each forecasting method with each data preprocessing method are compared and statistically tested. Artificial neural network and case-based reasoning methods with best performance are integrated. Out-of-the Model Integration and In-Model Integration are presented as the integration methodology. The research outcomes are as follows; First, genetic algorithms are useful and effective method to select input variables for Al techniques. Second, the results of the experiment with categorical data preprocessing significantly outperform that with traditional data preprocessing in forecasting up/down fluctuant direction of index futures price. Third, the integration of genetic algorithm and case-based reasoning (GACBR) outperforms the integration of genetic algorithm and artificial neural network (GAANN). Forth, the integration of genetic algorithm, case-based reasoning and artificial neural network (GAANN-GACBR, GACBRNN and GANNCBR) provide worse results than GACBR.

  • PDF

A Case of Establishing Robo-advisor Strategy through Parameter Optimization (금융 지표와 파라미터 최적화를 통한 로보어드바이저 전략 도출 사례)

  • Kang, Mincheal;Lim, Gyoo Gun
    • Journal of Information Technology Services
    • /
    • v.19 no.2
    • /
    • pp.109-124
    • /
    • 2020
  • Facing the 4th Industrial Revolution era, researches on artificial intelligence have become active and attempts have been made to apply machine learning in various fields. In the field of finance, Robo Advisor service, which analyze the market, make investment decisions and allocate assets instead of people, are rapidly expanding. The stock price prediction using the machine learning that has been carried out to date is mainly based on the prediction of the market index such as KOSPI, and utilizes technical data that is fundamental index or price derivative index using financial statement. However, most researches have proceeded without any explicit verification of the prediction rate of the learning data. In this study, we conducted an experiment to determine the degree of market prediction ability of basic indicators, technical indicators, and system risk indicators (AR) used in stock price prediction. First, we set the core parameters for each financial indicator and define the objective function reflecting the return and volatility. Then, an experiment was performed to extract the sample from the distribution of each parameter by the Markov chain Monte Carlo (MCMC) method and to find the optimum value to maximize the objective function. Since Robo Advisor is a commodity that trades financial instruments such as stocks and funds, it can not be utilized only by forecasting the market index. The sample for this experiment is data of 17 years of 1,500 stocks that have been listed in Korea for more than 5 years after listing. As a result of the experiment, it was possible to establish a meaningful trading strategy that exceeds the market return. This study can be utilized as a basis for the development of Robo Advisor products in that it includes a large proportion of listed stocks in Korea, rather than an experiment on a single index, and verifies market predictability of various financial indicators.

Analysis of the Ripple Effect of the US Federal Reserve System's Quantitative Easing Policy on Stock Price Fluctuations (미국연방준비제도의 양적완화 정책이 주가 변동에 미치는 영향 분석)

  • Hong, Sunghyuck
    • Journal of Digital Convergence
    • /
    • v.19 no.3
    • /
    • pp.161-166
    • /
    • 2021
  • The macroeconomic concept represents the movement of a country's economy, and it affects the overall economic activities of business, government, and households. In the macroeconomy, by looking at changes in national income, inflation, unemployment, currency, interest rates, and raw materials, it is possible to understand the effects of economic actors' actions and interactions on the prices of products and services. The US Federal Reserve System (FED) is leading the world economy by offering various stimulus measures to overcome the corona economic recession. Although the stock price continued to decline on March 20, 2020 due to the current economic recession caused by the corona, the US S&P 500 index began rebounding after March 23 and to 3,694.62 as of December 15 due to quantitative easing, a powerful stimulus for the FED. Therefore, the FED's economic stimulus measures based on macroeconomic indicators are more influencing, rather than judging the stock price forecast from the corporate financial statements. Therefore, this study was conducted to reduce losses in stock investment and establish sound investment by analyzing the FED's economic stimulus measures and its effect on stock prices.

Cryptocurrency Auto-trading Program Development Using Prophet Algorithm (Prophet 알고리즘을 활용한 가상화폐의 자동 매매 프로그램 개발)

  • Hyun-Sun Kim;Jae Joon Ahn
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.105-111
    • /
    • 2023
  • Recently, research on prediction algorithms using deep learning has been actively conducted. In addition, algorithmic trading (auto-trading) based on predictive power of artificial intelligence is also becoming one of the main investment methods in stock trading field, building its own history. Since the possibility of human error is blocked at source and traded mechanically according to the conditions, it is likely to be more profitable than humans in the long run. In particular, for the virtual currency market at least for now, unlike stocks, it is not possible to evaluate the intrinsic value of each cryptocurrencies. So it is far effective to approach them with technical analysis and cryptocurrency market might be the field that the performance of algorithmic trading can be maximized. Currently, the most commonly used artificial intelligence method for financial time series data analysis and forecasting is Long short-term memory(LSTM). However, even t4he LSTM also has deficiencies which constrain its widespread use. Therefore, many improvements are needed in the design of forecasting and investment algorithms in order to increase its utilization in actual investment situations. Meanwhile, Prophet, an artificial intelligence algorithm developed by Facebook (META) in 2017, is used to predict stock and cryptocurrency prices with high prediction accuracy. In particular, it is evaluated that Prophet predicts the price of virtual currencies better than that of stocks. In this study, we aim to show Prophet's virtual currency price prediction accuracy is higher than existing deep learning-based time series prediction method. In addition, we execute mock investment with Prophet predicted value. Evaluating the final value at the end of the investment, most of tested coins exceeded the initial investment recording a positive profit. In future research, we continue to test other coins to determine whether there is a significant difference in the predictive power by coin and therefore can establish investment strategies.