• 제목/요약/키워드: Stock price index

검색결과 276건 처리시간 0.03초

한국과 중국의 현물시장과 주가지수선물시장간의 선-후행관계에 관한 연구 (The Intraday Lead-Lag Relationships between the Stock Index and the Stock Index Futures Market in Korea and China)

  • 서상구
    • 경영과정보연구
    • /
    • 제32권4호
    • /
    • pp.189-207
    • /
    • 2013
  • 고빈도 자료를 이용하여 한국과 중국에서 주가지수선물시장이 개설된 이후 현물 시장과의 동적관련성에 어떠한 특징적 차이점이 있는지에 대해 분석하였다. KOSPI 200의 경우 시차변수를 이용한 다중회귀분석에서 주가지수선물가격이 현물가격을 약 15분 정도 선행하는 것으로 나타나 주가지수선물시장이 현물시장에 대해 가격발견기능을 수행하는 것으로 나타났다. EGARCH 모형을 이용한 수익률 변동성의 선-후행관계 분석의 경우 강하지는 않지만 주가지수선물가격의 변동성이 현물가격의 변동성에 선행하는 것으로 나타났다. 한국의 경우 주가지수선물시장이 개설된 초기단계에서부터 다른 선진국의 경우와 비슷하게 선물시장과 현물시장 간에는 가격 및 가격변동성의 동적관련성이 존재하는 것으로 나타났다. CSI 300의 경우 한국과는 다른 특징적 차이를 보여주고 있다. 우선 현물시장의 가격이 주가지수선물시장의 가격에 선행하는 것으로 나타났다. 그 이유는 국내의 개인투자자와 외국인 투자자들이 주가지수선물거래에 참여하는 것이 엄격히 제한됨으로써 선물시장으로 유입되는 정보가 상대적으로 늦게 가격에 반영되어 선물시장의 가격발견기능을 약화시킨 결과로 판단된다. 변동성의 경우 현물시장과 주가지수선물시장 간에는 양방향의 상호의존성이 나타나고 있어 어느 한 시장의 일방적인 선행효과는 발생하지 않는 것으로 나타났다. 정리하면, 중국의 주가지수선물시장은 투자자들의 시장참여에 대한 여러 가지 제약으로 인해 충분한 정보전달 기능을 수행하지 못하는 것으로 나타났다.

  • PDF

Toward global optimization of case-based reasoning for the prediction of stock price index

  • Kim, Kyoung-jae;Ingoo Han
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 춘계정기학술대회
    • /
    • pp.399-408
    • /
    • 2001
  • This paper presents a simultaneous optimization approach of case-based reasoning (CBR) using a genetic algorithm(GA) for the prediction of stock price index. Prior research suggested many hybrid models of CBR and the GA for selecting a relevant feature subset or optimizing feature weights. Most studies, however, used the GA for improving only a part of architectural factors for the CBR system. However, the performance of CBR may be enhanced when these factors are simultaneously considered. In this study, the GA simultaneously optimizes multiple factors of the CBR system. Experimental results show that a GA approach to simultaneous optimization of CBR outperforms other conventional approaches for the prediction of stock price index.

  • PDF

A GARCH-MIDAS approach to modelling stock returns

  • Ezekiel NN Nortey;Ruben Agbeli;Godwin Debrah;Theophilus Ansah-Narh;Edmund Fosu Agyemang
    • Communications for Statistical Applications and Methods
    • /
    • 제31권5호
    • /
    • pp.535-556
    • /
    • 2024
  • Measuring stock market volatility and its determinants is critical for stock market participants, as volatility spillover effects affect corporate performance. This study adopted a novel approach to analysing and implementing GARCH-MIDAS modelling methods. The classical GARCH as a benchmark and the univariate GARCH-MIDAS framework are the GARCH family models whose forecasting outcomes are examined. The outcome of GARCH-MIDAS analyses suggests that inflation, interest rate, exchange rate, and oil price are significant determinants of the volatility of the Johannesburg Stock Market All Share Index. While for Nigeria, the volatility reacts significantly to the exchange rate and oil price. Furthermore, inflation, exchange rate, interest rate, and oil price significantly influence Ghanaian equity volatility, especially for the long-term volatility component. The significant shock of the oil price and exchange rate to volatility is present in all three markets using the generalized autoregressive conditional heteroscedastic-mixed data sampling (GARCH-MIDAS) framework. The GARCH-MIDAS, with a powerful fusion of the GARCH model's volatility-capturing capabilities and the MIDAS approach's ability to handle mixed-frequency data, predicts the volatility for all variables better than the traditional GARCH framework. Incorporating these two techniques provides an innovative and comprehensive approach to modelling stock returns, making it an extremely useful tool for researchers, financial analysts, and investors.

Does Investor Sentiment Influence Stock Price Crash Risk? Evidence from Saudi Arabia

  • ALNAFEA, Maryam;CHEBBI, Kaouther
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권1호
    • /
    • pp.143-152
    • /
    • 2022
  • This paper examines the relationship between investor sentiment and the risk of a stock price crash at the firm level. Our dataset includes 131 firms listed on the Saudi stock exchange (Tadawul) from 2011 to 2019, as well as 953 firm-year observations. To evaluate crash risk, we employ two distinct proxies and propose an index for measuring firm-level sentiment which we use for the first time in our study. The average turnover rate, price-earnings ratio, and overnight return are the three sentiment proxies we utilize in our index. Our findings show that high levels of investor emotion increase managers' proclivity to withhold unfavorable news from investors, which aggravates the risk of a stock price crash. We undertake cross-sectional regressions by sector to ensure the robustness of our findings, and our findings are confirmed. After accounting for any endogeneity issues with the GMM technique, the results remain the same. Furthermore, we analyze the liquidity effect by dividing our sample into subsamples with better and worse liquidity and find that firms with worse liquidity have a considerably greater positive impact of investor mood. Overall, our findings help investors and regulators recognize the significance of this downside risk and how to manage it in the stock market.

Uncertainty and Manufacturing Stock Market in Korea

  • Jeon, Ji-Hong
    • 산경연구논집
    • /
    • 제10권1호
    • /
    • pp.29-37
    • /
    • 2019
  • Purpose - We study the dynamic linkages of the economic policy uncertainty (EPU) in the US on the manufacturing stock market returns in Korea. In detail, we examine the casual link between EPU index in the US and the manufacturing stock indexes in Korea. Research design, data, and methodology - We measure mainly the distribution effect of the US EPU on the manufacturing stock market in Korea of 1990-2017 by the vector error correction model (VECM). Result - In result, we estimate the impact of the US EPU index has significantly a negative response to the manufacturing stock market in Korea such as non-metal stock index, chemical stock index, food stock index, textile·clothes stock index, automobile·shipbuilding stock index, machinery stock index, steel·metal stock index. Also the remaining variables such as electric·electronics stock index, S&P 500, and producer price index in Korea have a negative relationship with US EPU index. Conclusions - We find out that the relationship between EPU index of the US and the manufacturing stock market in Korea has the negative relationships. We determine the EPU of the US has the spillover effect on the industry stock markets in Korea.

A Novel Parameter Initialization Technique for the Stock Price Movement Prediction Model

  • Nguyen-Thi, Thu;Yoon, Seokhoon
    • International journal of advanced smart convergence
    • /
    • 제8권2호
    • /
    • pp.132-139
    • /
    • 2019
  • We address the problem about forecasting the direction of stock price movement in the Korea market. Recently, the deep neural network is popularly applied in this area of research. In deep neural network systems, proper parameter initialization reduces training time and improves the performance of the model. Therefore, in our study, we propose a novel parameter initialization technique and apply this technique for the stock price movement prediction model. Specifically, we design a framework which consists of two models: a base model and a main prediction model. The base model constructed with LSTM is trained by using the large data which is generated by a large amount of the stock data to achieve optimal parameters. The main prediction model with the same architecture as the base model uses the optimal parameter initialization. Thus, the main prediction model is trained by only using the data of the given stock. Moreover, the stock price movements can be affected by other related information in the stock market. For this reason, we conducted our research with two types of inputs. The first type is the stock features, and the second type is a combination of the stock features and the Korea Composite Stock Price Index (KOSPI) features. Empirical results conducted on the top five stocks in the KOSPI list in terms of market capitalization indicate that our approaches achieve better predictive accuracy and F1-score comparing to other baseline models.

리츠와 건설경기, 부동산경기, 주식시장과의 관계 분석 (Relation Analysis Between REITs and Construction Business, Real Estate Business, and Stock Market)

  • 이치주;이강
    • 한국건설관리학회논문집
    • /
    • 제11권5호
    • /
    • pp.41-52
    • /
    • 2010
  • 리츠는 주식시장에 상장되어 있으면서 부동산 개발을 위한 자금조달의 성격과 부동산에 투자하는 특징도 있으므로, 주식 시장과 건설 및 부동산시장과 관계가 있을 것으로 예상할 수 있다. 본 연구에서는 리츠와 주식시장, 건설 및 부동산 경기와 관계된 지표들을 시계열 분석하여, 리츠와의 영향관계를 분석하였다. 시계열 분석은 백터자기회귀모형과 백터오차수정모형을 사용하였으며, 다음의 세 부분으로 분류하여 분석하였다. 첫째, 리츠와 건설 코스피 지수와의 관계를 분석한 결과, 건설 코스피 지수가 리츠에 영향을 주는 것으로 분석되었다. 둘째, 리츠와 건설경기 동행지수인 건축착공면적, 부동산 경기 지수인 오피스 임대지수와 주택매매가격지수와의 관계를 분석하였다. 각 지표들은 서로 인과관계는 없는 것으로 분석되었지만, 리츠와 주택매매가격지수는 서로에게 영향을 주는 것으로 분석되었다. 셋째, 리츠와 건설경기 선행지수인 건축허가면적의 관계를 분석하였다. 두 지표는 서로 인과관계가 없는 것으로 분석되었지만, 건축허가면적이 리츠에 영향을 미치는 것으로 분석되었다. 본 연구를 통해 리츠는 주식시장과 주택경기, 건설경기 선행지표인 건축허가 면적에 영향을 받지만, 건설경기 동행지표인 건축착공면적과 오피스 임대지수에는 상대적으로 영향을 작게 받는 것으로 분석되었다.

국제유가 충격이 산업별 주가에 미치는 영향 (Impact of Oil Price Shocks on Stock Prices by Industry)

  • 이윤정;윤성민
    • 자원ㆍ환경경제연구
    • /
    • 제31권2호
    • /
    • pp.233-260
    • /
    • 2022
  • 본 연구에서는 비모수적 분위수 인과관계 검정 방법을 이용하여 국제유가의 변동이 산업별 주가의 움직임에 어떤 영향을 주는지 분석하였다. 본 연구의 분석 대상은 1998년 1월부터 2021년 4월까지 WTI 가격, KOSPI 지수 및 18개 산업별 주가지수의 주별 데이터이다. 비모수 분위수 인과 검정 결과에서 유가 변화가 KOSPI 지수에 미치는 영향은 유의하지 않은 것으로 나타났다. 이는 KOSPI 지수에 포함된 여러 산업의 주가 반응이 서로 다르기 때문이라고 생각된다. 유가 변화에 대한 산업별 주가지수의 반응을 살펴보면, 주식 수익률을 0.1분위부터 0.9분위까지 0.05단위로 나눈 인과관계 결과에서 전체 18개 산업 중 섬유의복, 종이목재, 의약품 등을 포함한 9개 산업에서 인과성이 유의하게 나타났으며, 나머지 9개 산업에서는 유가와의 인과성을 보이지 않았다. 이 산업들 중 세 분위 이상에 걸쳐 연속적으로 인과성이 나타난 산업은 의약품과 통신업(0.45분위 ~ 0.85분위), 섬유의복(0.15분위 ~ 0.45분위), 건설업(0.5분위 ~ 0.6분위) 등 4개 산업으로 인과성이 나타난 구간은 업종마다 차이가 있다. 검정결과를 통해 유가의 변화에 대한 주가 반응에는 산업별로 큰 차이가 있었고, 한 산업에서도 시장 상황에 따라 다르게 나타남을 알 수 있다. 이것은 유가 변화 시기에 투자자들은 포트폴리오를 산업별로 재조정할 필요가 있음을 보여준다. 또한, 정부의 산업정책과 고용정책 등 거시경제정책도 유가 변화 영향이 산업별, 시장 상황별로 차이나는 점을 충분히 고려하여 운영되어야 할 것이다.

Change of Stock Earning Rate on Korean Quality Award Recipients - The comparison between KQA Index and Baldrige Index-

  • Suh, Yung-Ho;Lee, Hyun-Soo
    • International Journal of Quality Innovation
    • /
    • 제1권1호
    • /
    • pp.106-120
    • /
    • 2000
  • The purpose of this research is to understand the effects of Quality Management Award on stock prices movement and to examine the comparative advantages of quality award system in Korea and the U.S. This study compares the performances of QM Award companies in the stock market with those of the market index in both countries. We develop Korean Quality Award Index(KQA Index) based on the Baldrige Index of NIST in the U.S. We inspect three studies. Study 1 tests if the performances of MB Award winners and S&P500 index have a difference in the stock market. Study 2 tests if the performances of KQA winners and KOSPI(Korean Composite Stock Price Index) have a difference in the stock market. Study 3 tests if the performances of KQA winners and MB Award winners have a difference in the stock market. From the empirical tests, the performances of KQA winners are superior to those of KOSPI and the performances of MB Award winners are superior to those of S&P500 and the performances of MB Award winners are superior to those of KQA winners.

  • PDF

Using Genetic Algorithms to Support Artificial Neural Networks for the Prediction of the Korea stock Price Index

  • Kim, Kyoung-jae;Ingoo han
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2000년도 춘계정기학술대회 e-Business를 위한 지능형 정보기술 / 한국지능정보시스템학회
    • /
    • pp.347-356
    • /
    • 2000
  • This paper compares four models of artificial neural networks (ANN) supported by genetic algorithms the prediction of stock price index. Previous research proposed many hybrid models of ANN and genetic algorithms(GA) in order to train the network, to select the feature subsets, and to optimize the network topologies. Most these studies, however, only used GA to improve a part of architectural factors of ANN. In this paper, GA simultaneously optimized multiple factors of ANN. Experimental results show that GA approach to simultaneous optimization for ANN (SOGANN3) outperforms the other approaches.

  • PDF