• 제목/요약/키워드: Stock Price Forecasting

검색결과 88건 처리시간 0.021초

기계학습을 활용한 상품자산 투자모델에 관한 연구 (A Study on Commodity Asset Investment Model Based on Machine Learning Technique)

  • 송진호;최흥식;김선웅
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.127-146
    • /
    • 2017
  • 상품자산(Commodity Asset)은 주식, 채권과 같은 전통자산의 포트폴리오의 안정성을 높이기 위한 대체투자자산으로 자산배분의 형태로 투자되고 있지만 주식이나 채권 자산에 비해 자산배분에 대한 모델이나 투자전략에 대한 연구가 부족한 실정이다. 최근 발전한 기계학습(Machine Learning) 연구는 증권시장의 투자부분에서 적극적으로 활용되고 있는데, 기존 투자모델의 한계점을 개선하는 좋은 성과를 나타내고 있다. 본 연구는 이러한 기계학습의 한 기법인 SVM(Support Vector Machine)을 이용하여 상품자산에 투자하는 모델을 제안하고자 한다. 기계학습을 활용한 상품자산에 관한 기존 연구는 주로 상품가격의 예측을 목적으로 수행되었고 상품을 투자자산으로 자산배분에 관한 연구는 찾기 힘들었다. SVM을 통한 예측대상은 투자 가능한 대표적인 4개의 상품지수(Commodity Index)인 골드만삭스 상품지수, 다우존스 UBS 상품지수, 톰슨로이터 CRB상품지수, 로저스 인터내셔날 상품지수와 대표적인 상품선물(Commodity Futures)로 구성된 포트폴리오 그리고 개별 상품선물이다. 개별상품은 에너지, 농산물, 금속 상품에서 대표적인 상품인 원유와 천연가스, 옥수수와 밀, 금과 은을 이용하였다. 상품자산은 전반적인 경제활동 영역에 영향을 받기 때문에 거시경제지표를 통하여 투자모델을 설정하였다. 주가지수, 무역지표, 고용지표, 경기선행지표 등 19가지의 경제지표를 이용하여 상품지수와 상품선물의 등락을 예측하여 투자성과를 예측하는 연구를 수행한 결과, 투자모델을 활용하여 상품선물을 리밸런싱(Rebalancing)하는 포트폴리오가 가장 우수한 성과를 나타냈다. 또한, 기존의 대표적인 상품지수에 투자하는 것 보다 상품선물로 구성된 포트폴리오에 투자하는 것이 우수한 성과를 얻었으며 상품선물 중에서도 에너지 섹터의 선물을 제외한 포트폴리오의 성과가 더 향상된 성과를 나타남을 증명하였다. 본 연구에서는 포트폴리오 성과 향상을 위해 기존에 널리 알려진 전통적 주식, 채권, 현금 포트폴리오에 상품자산을 배분하고자 할 때 투자대상은 상품지수에 투자하는 것이 아닌 개별 상품선물을 선정하여 자체적 상품선물 포트폴리오를 구성하고 그 방법으로는 기간마다 강세가 예측되는 개별 선물만을 골라서 포트폴리오를 재구성하는 것이 효과적인 투자모델이라는 것을 제안한다.

웨이블릿 변환과 퍼지 신경망을 이용한 단기 KOSPI 예측 (Forecasting Short-Term KOSPI using Wavelet Transforms and Fuzzy Neural Network)

  • 신동근;정경용
    • 한국콘텐츠학회논문지
    • /
    • 제11권6호
    • /
    • pp.1-7
    • /
    • 2011
  • KOSPI는 정치 및 경제를 포함한 다양한 요소에 영향을 받는 관계로 정확한 단기 KOSPI 예측 방법론 개발은 매우 어려운 문제로 여겨지고 있다. 본 논문에서는 가중 퍼지소속함수 기반 신경망(NEWFM; neural network with weighted fuzzy membership functions)의 특징 추출기법을 사용하여 5일 동안의 주가 단기추세를 예측하는 방안을 제안한다. 비중복면적 분산 측정법에 의해 중요도가 가장 낮은 특징입력을 하나씩 제거하면서 최소의 특징입력을 선택한다. 특징입력으로써 기술지표를 이용하여 얻은 데이터를 웨이블릿 변환을 이용하여 39개의 계수들을 추출한다. 이들 39개의 특징입력 중 비중복면적 분산측정법에 의해서 추출된 12개의 계수가 사용된다. 제안된 방법에서는 민감도가 72.79%, 특이도가 74.76%, 정확도가 73.84%를 나타낸다.

한국주식시장에서 기업특성모형 적용에 관한 실증연구 (An Empirical Study on Korean Stock Market using Firm Characteristic Model)

  • 김수경;박종해;변영태;김태혁
    • 경영과정보연구
    • /
    • 제29권2호
    • /
    • pp.1-25
    • /
    • 2010
  • 본 논문은 우리나라 주식시장을 대상으로 Haugen Baker(1996)가 제시한 기업특성요인모형을 적용하여 주식수익률 결정요인을 분석하였다. 분석기간은 1999년부터 2007년까지 총 8년간이며, 총 690개의 상장기업의 월별 자료를 이용하였다. 기존 연구에서 제시된 변수를 바탕으로 유동성, 위험, 과거주가, 가격수준, 수익성 등과 관련된 16개의 변수를 독립변수로, 690개 주식의 월별 수익률을 종속변수로 하여 시간가변 회귀분석을 통해 분석결과의 강건성을 높이고자 하였다. 본 연구의 결과는 다음과 같이 요약될 수 있다. 첫째, 기업특성정보가 주식수익률 결정에 미치는 사전적 영향을 분석한 결과 해당기업이 공개한 직전월의 기업특성 정보 중 당월의 주가에 유의적인 영향을 나타내는 기업특성은 유동성, 모멘텀 지표인 1개월, 3개월, 6개월 초과수익률, 주가 승수 중 PSR, PBR, 수익성을 나타내는 ROE와 EPS 등의 8개 요인이다. 예측된 수익률을 이용하여 구축한 10개의 분위별 포트폴리오를 대상으로 실현수익률을 분석한 결과 예측수익률이 높을수록 실현된 수익률이 일관되게 높게 나타나는 것으로 분석되었다. 둘째, Haugen Baker가 제안한 기업특성모형을 이용한 주가예측모형을 바탕으로 구성된 포트폴리오를 Fama French가 제안한 3요인 모형에 적용시킨 결과 수익률이 높을 것으로 예측된 포트폴리오의 실현수익률이 높게 나타남을 확인하였다. 즉, 우리나라 주식시장의 수익률을 예측하는 데는 Haugen Baker의 기업특성 요인모형을 응용한 모형이 더욱 적합할 수 있으며, 이를 이용하는 것이 실무적으로도 유용성이 높을 것으로 기대할 수 있다. 본 연구는 기존연구를 보완하여 보다 강건한 예측 및 운영성과를 보여주기 위해 노력하였다. 이를 위해, 시간 가변적으로 (1) 요인프리미엄을 추정, (2) 수익률예측 및 포트폴리오 조정, (3) 실현수익률 측정의 과정을 반복적으로 수행하였으며, 예측수익률이 높은 포트폴리오의 실현수익률이 상대적으로 높게 나타나는 일관된 결과를 강건하게 보여주고 있다.

  • PDF

회귀나무를 이용한 기업경기실사지수의 영향요인 분석 (The Analysis of Factors which Affect Business Survey Index Using Regression Trees)

  • 장영재
    • 응용통계연구
    • /
    • 제23권1호
    • /
    • pp.63-71
    • /
    • 2010
  • 기업가들은 일반적으로 기업의 성장을 위하여 국내외 경제동향에 대하여 면밀한 분석과 판단 및 예측을 하고 기업의 경영 활동에 반영한다. 기업가들의 이와 같은 종합적인 판단, 예측, 계획 등은 생산, 투자, 고용 등 기업의 경제활동에 영향을 미치게 되며, 국민경제 전체의 경제활동 수준이라 할 수 있는 경기에도 큰 영향을 미치게 된다. 기업경기 실사지수(Business Survey Index; BSI)는 이러한 기업가의 주관적이고 심리적인 요인에 대한 정보를 수집하여 경기분석에 활용하고자 하는 필요성에 의해 작성되었다. 기업경기실사지수는 과거 외환위기를 전후한 경기변동기에서 경제예측을 위한 단기시계열 모형의 매우 유용한 변수로 이용되었다. 최근의 금융위기는 과거 외환위기 당시와 유사한 급격한 경기변동올 수반하연서 기업정기실사지수의 경제예측변수로서의 중요성을 재차 부각시졌다. 본고에서는 이와 같이 유용성이 높아지고 있는 경제심리지표로서 기업경기실사지수의 의미에 대해 개괄하고 동 지수에 영향을 미치고 있는 요인에는 어떠한 것들이 있는지 살펴보았다. 분석을 위해 GUIDE 회귀나무 알고리즘을 이용하였으며, 분석한 결과 다양한 경제변수틀 중 제조업 가동률 및 소비재 판매액 등 기업의 활동과 직결된 지표와 더불어 kospi와 환율 등 금융시장의 안정성과 관련된 지표도 경제심리에 영향을 미치는 변수로 나타났다.

재무예측을 위한 Support Vector Machine의 최적화 (Optimization of Support Vector Machines for Financial Forecasting)

  • 김경재;안현철
    • 지능정보연구
    • /
    • 제17권4호
    • /
    • pp.241-254
    • /
    • 2011
  • Support vector machines(SVM)은 비교적 최근에 등장한 데이터마이닝 기법이지만, 재무, CRM 등의 경영학 분야에서 많이 연구되고 있다. SVM은 인공신경망과 필적할 만큼의 예측 정확도를 보이는 사례가 많았지만, 암상자로 불리는 인공신경망 모형에 비해 구축된 예측모형의 구조를 이해하기 쉽고, 인공신경망에 비해 과도적합의 가능성이 적어서 적은 수의 데이터에서도 적용 가능하다는 장점을 가지고 있다. 하지만, 일반적인 SVM을 이용하려면, 인공신경망과 마찬가지로 여러 가지 설계요소들을 설계자가 선택하여야 하기 때문에 임의성이 높고, 국부 최적해에 수렴할 가능성도 크다. 또한, 많은 수의 데이터가 존재하는 경우에는 데이터를 분석하고 이용하는데 시간이 소요되고, 종종 잡음이 심한 데이터가 포함된 경우에는 기대하는 수준의 예측성과를 얻지 못할 가능성이 있다. 본 연구에서는 일반적인 SVM의 장점을 그대로 유지하면서, 전술한 두 가지 단점을 보완한 새로운 SVM 모형을 제안한다. 본 연구에서 제안하는 모형은 사례선택기법을 일반적인 SVM에 융합한 것으로 대용량의 데이터에서 예측에 불필요한 데이터를 선별적으로 제거하여 예측의 정확도와 속도를 제고할 수 있는 방법이다. 본 연구에서는 잡음이 많고 예측이 어려운 것으로 알려진 재무 데이터를 활용하여 제안 모형의 유용성을 확인하였다.

지능형 전망모형을 결합한 로보어드바이저 알고리즘 (Robo-Advisor Algorithm with Intelligent View Model)

  • 김선웅
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.39-55
    • /
    • 2019
  • 최근 은행과 증권회사를 중심으로 다양한 로보어드바이저 금융상품들이 출시되고 있다. 로보어드바이저는 사람 대신 컴퓨터가 포트폴리오 자산배분에 대한 투자 결정을 실행하기 때문에 다양한 자산배분 알고리즘이 활용되고 있다. 본 연구에서는 대표적 로보어드바이저 알고리즘인 블랙리터만모형의 강점을 살리면서 객관적 투자자 전망을 도출할 수 있는 지능형 전망모형을 제안하고 이를 내재균형수익률과 결합하여 최종 포트폴리오를 도출하는 로보어드바이저 자산배분 알고리즘을 새로이 제안하며, 실제 주가자료를 이용한 실증분석 결과를 통해 전문가의 주관적 전망을 대신할 수 있는 지능형 전망모형의 실무적 적용 가능성을 보여주고자 한다. 그동안 주가 예측에서 우수한 성과를 보여주었던 기계학습 방법 중 SVM 모형을 이용하여 각 자산별 기대수익률에 대한 예측과 예측 확률을 도출하고 이를 각각 기대수익률에 대한 투자자 전망과 전망에 대한 신뢰도 수준의 입력변수로 활용하는 지능형 전망모형을 제안하였다. 시장포트폴리오로부터 도출된 내재균형수익률과 지능형 전망모형의 기대수익률, 확률을 결합하여 최종적인 블랙리터만모형의 최적포트폴리오를 도출하였다. 주가자료는 2008년부터 2018년까지의 132개월 동안의 8개의 KOSPI 200 섹터지수 월별 자료를 분석하였다. 블랙리터만모형으로 도출된 최적포트폴리오의 결과가 기존의 평균분산모형이나 리스크패리티모형 등과 비교하여 우수한 성과를 보여주었다. 구체적으로 2008년부터 2015년까지의 In-Sample 자료에서 최적화된 블랙리터만모형을 2016년부터 2018년까지의 Out-Of-Sample 기간에 적용한 실증분석 결과에서 다른 알고리즘보다 수익과 위험 모두에서 좋은 성과를 기록하였다. 총수익률은 6.4%로 최고 수준이며, 위험지표인 MDD는 20.8%로 최저수준을 기록하였다. 수익과 위험을 동시에 고려하여 투자 성과를 측정하는 샤프비율 역시 0.17로 가장 좋은 결과를 보여주었다. 증권계의 애널리스트 전문가들이 발표하는 투자자 전망자료의 신뢰성이 낮은 상태에서, 본 연구에서 제안된 지능형 전망모형은 현재 빠른 속도로 확장되고 있는 로보어드바이저 관련 금융상품을 개발하고 운용하는 실무적 관점에서 본 연구는 의의가 있다고 판단된다.

PCA를 활용한 기업실적 예측변수 생성 (Generating Firm's Performance Indicators by Applying PCA)

  • 이준혁;김갑조;박상성;장동식
    • 한국지능시스템학회논문지
    • /
    • 제25권2호
    • /
    • pp.191-196
    • /
    • 2015
  • 최근 기업의 실적 및 주가를 예측하기 위해 매출액증가율, 부채비율 등의 다양한 예측변수를 활용하여 정량적인 예측방법을 활용하는 연구가 많이 이루어지고 있다. 기업실적 및 주가를 정량적 예측하기 위해 수많은 예측변수들 중에서 모델구축을 위해 중요한 예측변수를 선정하는 것이 중요하다. 대부분의 기존연구들에서는 다양한 알고리즘을 활용하여 예측변수들을 제거하는 방법을 사용하는 경우가 많았다. 이러한 경우 각 예측변수들이 가지는 많은 정보들이 제거되는 문제점이 존재한다. 이러한 문제점을 해결하기 위해 본 연구에서는 예측모델 구축을 위해 예측변수들을 제거하는 대신 각 변수들이 가지고 있는 정보를 병합하여 새로운 변수를 생성하는 대표적인 차원축소 방법인 주성분분석(PCA)을 활용하였다. 본 연구에서는 제안된 예측모델을 미국의 전자, 전기기업의 재무정보를 활용하여 구축하고 예측성능을 실증적으로 분석해 보았다.

지능형 변동성트레이딩시스템개발을 위한 GARCH 모형을 통한 VKOSPI 예측모형 개발에 관한 연구 (A Study on Developing a VKOSPI Forecasting Model via GARCH Class Models for Intelligent Volatility Trading Systems)

  • 김선웅
    • 지능정보연구
    • /
    • 제16권2호
    • /
    • pp.19-32
    • /
    • 2010
  • 학계와 금융파생상품 가격결정이나 변동성매매와 같은 실무영역 모두에서 주식시장의 변동성은 중요한 역할을 한다. 본 연구는 GARCH 모형에 기초하여 한국주식시장의 변동성을 정확히 예측함으로써 변동성매매시스템의 성과를 높일 수 있는 새로운 방법을 제시하였다. 특히, 여러 연구 자료에서 밝혀지고 있는 변동성 비대칭성개념을 도입하였다. 최근 새로 개발된 한국주식시장 변동성 지수인 VKOSPI를 변동성 대용값으로 사용한다. VKOSPI는 KOSPI 200 지수옵션의 가격을 이용하여 계산된 값으로서 옵션딜러들의 변동성 예측치를 반영하고 있다. KOSPI 200 옵션시장은 1997년 시작되었으며, 발전을 거듭하여 현재 하루 거래량이 1,000만 계약을 넘어서면서 세계 최고의 지수옵션시장으로 발전하였다. 이러한 옵션시장에 반영된 변동성을 분석하는 것은 투자자들에게 좋은 투자정보를 제공하게 될 것이다. 특히, 변동성 대용값으로 VKOSPI를 사용하면 다른 변동성 대용치를 사용할 때 발생하는 통계적 추정의 문제를 피해 갈 수 있다. 본 연구는 2003년부터 2006년의 KOSPI 200 지수 일별자료를 대상으로 최우도추정방법(MLE)을 이용하여 GARCH 모형을 추정한다. 비대칭 GARCH 모형으로는 Glosten, Jagannathan, Runke의 GJR-GARCH 모형, Nelson의 EGARCH 모형, 그리고 Ding, Granger, Engle의 PARCH모형을 포함하며 대칭 GARCH 모형은 (1, 1) GARCH 모형을 이용한다. 2007년부터 2009년까지의 KOSPI 200 지수 일별자료를 대상으로 반복적 계산과정을 통해 내일의 변동성 예측값과 오르고 내리는 변화방향을 예측하였다. 분석 결과 시장변동성과 예기치 않은 주가변동 사이에는 음의 상관관계가 존재하며, 음의 주가변동은 동일한 크기의 양의 주가변동보다 훨씬 더 큰 변동성의 증가를 가져옴을 알 수 있다. 즉, 한국 주식시장에도 변동성 비대칭성이 존재함을 보여주었다. GARCH 모형을 이용하여 내일의 VKOSPI의 등락방향을 예측하고 이를 이용하여 변동성 매매시스템을 개발하였다. 내일의 변동성이 상승할 것으로 예측되면 스트래들매수전략을 이용하고 반대로 변동성이 하락할 것으로 예측되면 스트래들 매도전략을 이용한다. 변동성의 변화방향성을 맞춘 경우에는 VKOSPI 변동분을 더하고 틀린 경우에는 변동분을 뺀 누적합을 이용하여 변동성매매전략의 총수익을 계산한다. 모형추정용 자료구간의 경우 통계적 기준인 MSPE 기준으로는 PARCH 모형의 적합도가 가장 높고, 예측방향의 적중도를 재는 MCP 기준으로는 EGARCH 모형이 가장 높은 값을 보여주었다. 테스트용 자료구간의 경우에는 PARCH 모형이 모형적합도와 내일의 변동성 등락방향 예측에서 가장 좋은 결과를 보여주었다. 모형추정용 자료구간의 경우 GARCH 모형 전체에서 매매이익을 기록하고 있고 테스트용 자료구간의 경우에는 EGARCH 모형을 제외한 GARCH 모형들이 매매이익을 보여주었다. 본 연구에서 나타난 변동성의 군집과 비대칭성 현상으로부터 변동성에 비선형성이 존재함을 알 수 있었으며, 비선형성에서 좋은 결과를 보이고 있는 인공지능시스템과 비대칭 GARCH 모형을 결합한다면 제안된 변동성매매시스템의 성과를 많이 개선할 수 있을 것으로 판단된다.