• Title/Summary/Keyword: Stock Price Forecasting

Search Result 88, Processing Time 0.366 seconds

Online news-based stock price forecasting considering homogeneity in the industrial sector (산업군 내 동질성을 고려한 온라인 뉴스 기반 주가예측)

  • Seong, Nohyoon;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.1-19
    • /
    • 2018
  • Since stock movements forecasting is an important issue both academically and practically, studies related to stock price prediction have been actively conducted. The stock price forecasting research is classified into structured data and unstructured data, and it is divided into technical analysis, fundamental analysis and media effect analysis in detail. In the big data era, research on stock price prediction combining big data is actively underway. Based on a large number of data, stock prediction research mainly focuses on machine learning techniques. Especially, research methods that combine the effects of media are attracting attention recently, among which researches that analyze online news and utilize online news to forecast stock prices are becoming main. Previous studies predicting stock prices through online news are mostly sentiment analysis of news, making different corpus for each company, and making a dictionary that predicts stock prices by recording responses according to the past stock price. Therefore, existing studies have examined the impact of online news on individual companies. For example, stock movements of Samsung Electronics are predicted with only online news of Samsung Electronics. In addition, a method of considering influences among highly relevant companies has also been studied recently. For example, stock movements of Samsung Electronics are predicted with news of Samsung Electronics and a highly related company like LG Electronics.These previous studies examine the effects of news of industrial sector with homogeneity on the individual company. In the previous studies, homogeneous industries are classified according to the Global Industrial Classification Standard. In other words, the existing studies were analyzed under the assumption that industries divided into Global Industrial Classification Standard have homogeneity. However, existing studies have limitations in that they do not take into account influential companies with high relevance or reflect the existence of heterogeneity within the same Global Industrial Classification Standard sectors. As a result of our examining the various sectors, it can be seen that there are sectors that show the industrial sectors are not a homogeneous group. To overcome these limitations of existing studies that do not reflect heterogeneity, our study suggests a methodology that reflects the heterogeneous effects of the industrial sector that affect the stock price by applying k-means clustering. Multiple Kernel Learning is mainly used to integrate data with various characteristics. Multiple Kernel Learning has several kernels, each of which receives and predicts different data. To incorporate effects of target firm and its relevant firms simultaneously, we used Multiple Kernel Learning. Each kernel was assigned to predict stock prices with variables of financial news of the industrial group divided by the target firm, K-means cluster analysis. In order to prove that the suggested methodology is appropriate, experiments were conducted through three years of online news and stock prices. The results of this study are as follows. (1) We confirmed that the information of the industrial sectors related to target company also contains meaningful information to predict stock movements of target company and confirmed that machine learning algorithm has better predictive power when considering the news of the relevant companies and target company's news together. (2) It is important to predict stock movements with varying number of clusters according to the level of homogeneity in the industrial sector. In other words, when stock prices are homogeneous in industrial sectors, it is important to use relational effect at the level of industry group without analyzing clusters or to use it in small number of clusters. When the stock price is heterogeneous in industry group, it is important to cluster them into groups. This study has a contribution that we testified firms classified as Global Industrial Classification Standard have heterogeneity and suggested it is necessary to define the relevance through machine learning and statistical analysis methodology rather than simply defining it in the Global Industrial Classification Standard. It has also contribution that we proved the efficiency of the prediction model reflecting heterogeneity.

Cascade-Correlation Network를 이용한 종합주가지수 예측

  • 지원철;박시우;신현정;신홍섭
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.745-748
    • /
    • 1996
  • Korea Composite Stock Price Index (KOSPI) was predicted using Cascade Correlation Network (CCN) model. CCN was suggested, by Fahlman and Lebiere [1990], to overcome the limitations of backpropagation algorithm such as step size problem and moving target problem. To test the applicability of CCN as a function approximator to the stock price movements, CCN was used as a tool for univariate time series analysis. The fitting and forecasting performance fo CCN on the KOSPI was compared with those of Multi-Layer Perceptron (MLP).

  • PDF

Prediction of the price for stock index futures using integrated artificial intelligence techniques with categorical preprocessing

  • Kim, Kyoung-jae;Han, Ingoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1997.10a
    • /
    • pp.105-108
    • /
    • 1997
  • Previous studies in stock market predictions using artificial intelligence techniques such as artificial neural networks and case-based reasoning, have focused mainly on spot market prediction. Korea launched trading in index futures market (KOSPI 200) on May 3, 1996, then more people became attracted to this market. Thus, this research intends to predict the daily up/down fluctuant direction of the price for KOSPI 200 index futures to meet this recent surge of interest. The forecasting methodologies employed in this research are the integration of genetic algorithm and artificial neural network (GAANN) and the integration of genetic algorithm and case-based reasoning (GACBR). Genetic algorithm was mainly used to select relevant input variables. This study adopts the categorical data preprocessing based on expert's knowledge as well as traditional data preprocessing. The experimental results of each forecasting method with each data preprocessing method are compared and statistically tested. Artificial neural network and case-based reasoning methods with best performance are integrated. Out-of-the Model Integration and In-Model Integration are presented as the integration methodology. The research outcomes are as follows; First, genetic algorithms are useful and effective method to select input variables for Al techniques. Second, the results of the experiment with categorical data preprocessing significantly outperform that with traditional data preprocessing in forecasting up/down fluctuant direction of index futures price. Third, the integration of genetic algorithm and case-based reasoning (GACBR) outperforms the integration of genetic algorithm and artificial neural network (GAANN). Forth, the integration of genetic algorithm, case-based reasoning and artificial neural network (GAANN-GACBR, GACBRNN and GANNCBR) provide worse results than GACBR.

  • PDF

Competition between Online Stock Message Boards in Predictive Power: Focused on Multiple Online Stock Message Boards

  • Kim, Hyun Mo;Park, Jae Hong
    • Asia pacific journal of information systems
    • /
    • v.26 no.4
    • /
    • pp.526-541
    • /
    • 2016
  • This research aims to examine the predictive power of multiple online stock message boards, namely, NAVER Finance and PAXNET, which are the most popular stock message boards in South Korea, in stock market activities. If predictive power exists, we then compare the predictive power of multiple online stock message boards. To accomplish the research purpose, we constructed a panel data set with close price, volatility, Spell out acronyms at first mention.PER, and number of posts in 40 companies in three months, and conducted a panel vector auto-regression analysis. The analysis results showed that the number of posts could predict stock market activities. In NAVER Finance, previous number of posts positively influenced volatility on the day. In PAXNET, previous number of posts positively influenced close price, volatility, and PER on the day. Second, we confirmed a difference in the prediction power for stock market activities between multiple online stock message boards. This research is limited by the fact that it only considered 40 companies and three stock market activities. Nevertheless, we found correlation between online stock message board and stock market activities and provided practical implications. We suggest that investors need to focus on specific online message boards to find interesting stock market activities.

A Comparative Analysis of the Prediction Models for the Direction of Stock Price Using the Online Company Reviews (기업 리뷰 정보를 활용한 주가 방향 예측 모델 비교 분석)

  • Lim, Yongtaek;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.8
    • /
    • pp.165-171
    • /
    • 2020
  • Most of the stock price prediction research using text mining uses news and SNS data. However, there is a weakness that it is difficult to get honest and vivid information about companies from them. This paper deals with the problem of the prediction for the direction of stock price by doing text mining the online company reviews of internal staff indicating employee satisfaction. The comparative analysis of the prediction models for the direction of stock price showed the prediction model, which adds internal employee reviews, has better performance than those that did not. This paper presents the convergence study using natural language processing in financial engineering. In the field of stock price prediction, This paper pursued a new methodology that used employee satisfaction. In practice, it is expected to provide useful information in the field of forecasting stock price direction.

A study on Deep Learning-based Stock Price Prediction using News Sentiment Analysis

  • Kang, Doo-Won;Yoo, So-Yeop;Lee, Ha-Young;Jeong, Ok-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.31-39
    • /
    • 2022
  • Stock prices are influenced by a number of external factors, such as laws and trends, as well as number-based internal factors such as trading volume and closing prices. Since many factors affect stock prices, it is very difficult to accurately predict stock prices using only fragmentary stock data. In particular, since the value of a company is greatly affected by the perception of people who actually trade stocks, emotional information about a specific company is considered an important factor. In this paper, we propose a deep learning-based stock price prediction model using sentiment analysis with news data considering temporal characteristics. Stock and news data, two heterogeneous data with different characteristics, are integrated according to time scale and used as input to the model, and the effect of time scale and sentiment index on stock price prediction is finally compared and analyzed. Also, we verify that the accuracy of the proposed model is improved through comparative experiments with existing models.

Structural effects on stock price forecasting

  • Kim, Steven H.;Kang, Dae-Suk
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.207-210
    • /
    • 1996
  • Learning methodologies such as neural networks or genetic algorithms usually require long training times. Case based reasoning, however, attains peak performance swiftly and is often appropriate for learning even with small data sets. Previous work has shown that an extended case reasoning methodology can yield superior performance in the task of predicting financial data series. This paper examines the impact of reasoning procedures on stock price prediction. The following characteristics are evaluated: size of input vector, multiplicity of neighboring states, and a scaling factor for growth. The concepts are illustrated in the context of predicting the price of an individual price.

  • PDF

A study on stock price prediction system based on text mining method using LSTM and stock market news (LSTM과 증시 뉴스를 활용한 텍스트 마이닝 기법 기반 주가 예측시스템 연구)

  • Hong, Sunghyuck
    • Journal of Digital Convergence
    • /
    • v.18 no.7
    • /
    • pp.223-228
    • /
    • 2020
  • The stock price reflects people's psychology, and factors affecting the entire stock market include economic growth rate, economic rate, interest rate, trade balance, exchange rate, and currency. The domestic stock market is heavily influenced by the stock index of the United States and neighboring countries on the previous day, and the representative stock indexes are the Dow index, NASDAQ, and S & P500. Recently, research on stock price analysis using stock news has been actively conducted, and research is underway to predict the future based on past time series data through artificial intelligence-based analysis. However, even if the stock market is hit for a short period of time by the forecasting system, the market will no longer move according to the short-term strategy, and it will have to change anew. Therefore, this model monitored Samsung Electronics' stock data and news information through text mining, and presented a predictable model by showing the analyzed results.

Long-Term Forecasting by Wavelet-Based Filter Bank Selections and Its Application

  • Lee, Jeong-Ran;Lee, You-Lim;Oh, Hee-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.2
    • /
    • pp.249-261
    • /
    • 2010
  • Long-term forecasting of seasonal time series is critical in many applications such as planning business strategies and resolving possible problems of a business company. Unlike the traditional approach that depends solely on dynamic models, Li and Hinich (2002) introduced a combination of stochastic dynamic modeling with filter bank approach for forecasting seasonal patterns using highly coherent(High-C) waveforms. We modify the filter selection and forecasting procedure on wavelet domain to be more feasible and compare the resulting predictor with one that obtained from the wavelet variance estimation method. An improvement over other seasonal pattern extraction and forecasting methods based on such as wavelet scalogram, Holt-Winters, and seasonal autoregressive integrated moving average(SARIMA) is shown in terms of the prediction error. The performance of the proposed method is illustrated by a simulation study and an application to the real stock price data.

다변량 최근접 예측 모형: 거래량을 고려한 종합주가지수의 예측

  • 윤종훈;이회경
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.278-281
    • /
    • 1998
  • This paper examines the mutlivariate nearest neighbor forecasting model which considers the volume traded as well as the stock price. The empirical results using the data from KOSPI indicate that the predictive power of the nearest neighbor model increases as the model becomes mutlivariate.

  • PDF