• Title/Summary/Keyword: Stock Prediction

Search Result 290, Processing Time 0.027 seconds

Deep Learning-Based Stock Fluctuation Prediction According to Overseas Indices and Trading Trend by Investors (해외지수와 투자자별 매매 동향에 따른 딥러닝 기반 주가 등락 예측)

  • Kim, Tae Seung;Lee, Soowon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.9
    • /
    • pp.367-374
    • /
    • 2021
  • Stock price prediction is a subject of research in various fields such as economy, statistics, computer engineering, etc. In recent years, researches on predicting the movement of stock prices by learning artificial intelligence models from various indicators such as basic indicators and technical indicators have become active. This study proposes a deep learning model that predicts the ups and downs of KOSPI from overseas indices such as S&P500, past KOSPI indices, and trading trends by KOSPI investors. The proposed model extracts a latent variable using a stacked auto-encoder to predict stock price fluctuations, and predicts the fluctuation of the closing price compared to the market price of the day by learning an LSTM suitable for learning time series data from the extracted latent variable to decide to buy or sell based on the value. As a result of comparing the returns and prediction accuracy of the proposed model and the comparative models, the proposed model showed better performance than the comparative models.

Stock Forecasting Using Prophet vs. LSTM Model Applying Time-Series Prediction

  • Alshara, Mohammed Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.185-192
    • /
    • 2022
  • Forecasting and time series modelling plays a vital role in the data analysis process. Time Series is widely used in analytics & data science. Forecasting stock prices is a popular and important topic in financial and academic studies. A stock market is an unregulated place for forecasting due to the absence of essential rules for estimating or predicting a stock price in the stock market. Therefore, predicting stock prices is a time-series problem and challenging. Machine learning has many methods and applications instrumental in implementing stock price forecasting, such as technical analysis, fundamental analysis, time series analysis, statistical analysis. This paper will discuss implementing the stock price, forecasting, and research using prophet and LSTM models. This process and task are very complex and involve uncertainty. Although the stock price never is predicted due to its ambiguous field, this paper aims to apply the concept of forecasting and data analysis to predict stocks.

A Study on the Evaluation of Acoustic Power of Korean Railway for Noise Prediction and its Application (한국철도 소음 예측을 위한 음향파워 산출 및 활용에 관한 연구)

  • 조준호;이덕희;최성훈;김재철
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.2
    • /
    • pp.93-98
    • /
    • 2004
  • For the reduction and efficient management of railway noise, first of all prediction of railway noise is necessarily requisted. At home and abroad many studies for prediction of railway nearby noise have been accomplished. But it is impossible to predict exactly for the Korean Railway, because the acoustic powers for each rolling stock used in Korea have not been built yet. So in this study, acoustic powers for each Korean rolling stock such as Samaeul, Mugungwha were builded acceding to the speed and rail support systems. Predicted results using the acoustic powers suggested in this study are compared with measured results and it is known that these acoustic powers can be used for precise prediction of railway noise.

Quantitative Causal Reasoning in Stock Price Index Prediction Model

  • Kim, Myoung-Joon;Ingoo Han
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.228-231
    • /
    • 1998
  • Artificial Intelligence literatures have recognized that stock market is a highly unstructured and complex domain so that it is difficult to find knowledge that belongs to that domain. This paper demonstrates that the proposed QCOM can derive global knowledge about stock market on the basis of a set of local knowledge and express it as a digraph representation. In addition, inference mechanism using quantitative causal reasoning can describe the qualitative and quantitative effects of exogenous variables on stock market.

  • PDF

Competition between Online Stock Message Boards in Predictive Power: Focused on Multiple Online Stock Message Boards

  • Kim, Hyun Mo;Park, Jae Hong
    • Asia pacific journal of information systems
    • /
    • v.26 no.4
    • /
    • pp.526-541
    • /
    • 2016
  • This research aims to examine the predictive power of multiple online stock message boards, namely, NAVER Finance and PAXNET, which are the most popular stock message boards in South Korea, in stock market activities. If predictive power exists, we then compare the predictive power of multiple online stock message boards. To accomplish the research purpose, we constructed a panel data set with close price, volatility, Spell out acronyms at first mention.PER, and number of posts in 40 companies in three months, and conducted a panel vector auto-regression analysis. The analysis results showed that the number of posts could predict stock market activities. In NAVER Finance, previous number of posts positively influenced volatility on the day. In PAXNET, previous number of posts positively influenced close price, volatility, and PER on the day. Second, we confirmed a difference in the prediction power for stock market activities between multiple online stock message boards. This research is limited by the fact that it only considered 40 companies and three stock market activities. Nevertheless, we found correlation between online stock message board and stock market activities and provided practical implications. We suggest that investors need to focus on specific online message boards to find interesting stock market activities.

Predicting stock price direction by using data mining methods : Emphasis on comparing single classifiers and ensemble classifiers

  • Eo, Kyun Sun;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.11
    • /
    • pp.111-116
    • /
    • 2017
  • This paper proposes a data mining approach to predicting stock price direction. Stock market fluctuates due to many factors. Therefore, predicting stock price direction has become an important issue in the field of stock market analysis. However, in literature, there are few studies applying data mining approaches to predicting the stock price direction. To contribute to literature, this paper proposes comparing single classifiers and ensemble classifiers. Single classifiers include logistic regression, decision tree, neural network, and support vector machine. Ensemble classifiers we consider are adaboost, random forest, bagging, stacking, and vote. For the sake of experiments, we garnered dataset from Korea Stock Exchange (KRX) ranging from 2008 to 2015. Data mining experiments using WEKA revealed that random forest, one of ensemble classifiers, shows best results in terms of metrics such as AUC (area under the ROC curve) and accuracy.

Two-Stage Forecasting Using Change-Point Detection and Artificial Neural Networks for Stock Price Index (주가지수예측에서의 변환시점을 반영한 이단계 신경망 예측모형)

  • Oh, Kyong-Joo;Kim, Kyoung-Jae;Han, In-Goo
    • Asia pacific journal of information systems
    • /
    • v.11 no.4
    • /
    • pp.99-111
    • /
    • 2001
  • The prediction of stock price index is a very difficult problem because of the complexity of stock market data. It has been studied by a number of researchers since they strongly affect other economic and financial parameters. The movement of stock price index has a series of change points due to the strategies of institutional investors. This study presents a two-stage forecasting model of stock price index using change-point detection and artificial neural networks. The basic concept of this proposed model is to obtain intervals divided by change points, to identify them as change-point groups, and to use them in stock price index forecasting. First, the proposed model tries to detect successive change points in stock price index. Then, the model forecasts the change-point group with the backpropagation neural network(BPN). Finally, the model forecasts the output with BPN. This study then examines the predictability of the integrated neural network model for stock price index forecasting using change-point detection.

  • PDF

Development of the KOSPI (Korea Composite Stock Price Index) forecast model using neural network and statistical methods) (신경 회로망과 통계적 기법을 이용한 종합주가지수 예측 모형의 개발)

  • Lee, Eun-Jin;Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.95-101
    • /
    • 2008
  • Modeling of stock prices forecast has been considered as one of the most difficult problem to develop accurately since stock prices are highly correlated with various environmental conditions including economics and political situation. In this paper, we propose a agent system approach to predict Korea Composite Stock Price Index (KOSPI) using neural network and statistical methods. To minimize mean of prediction error and variation of prediction error, agent system includes sub-agent modules for feature extraction, variables selection, forecast engine selection, and forecasting results analysis. As a first step to develop agent system for KOSPI forecasting, twelve economic indices are selected from twenty two basic standard economic indices using principal component analysis. From selected twelve economic indices, prediction model input variables are chosen again using best-subsets regression method. Two different types data are tested for KOSPI forecasting and the Prediction results showed 11.92 points of root mean squared error for consecutive thirty days of prediction. Also, it is shown that proposed agent system approach for KOSPI forecast is effective since required types and numbers of prediction variables are time-varying, so adaptable selection of modeling inputs and prediction engine are essential for reliable and accurate forecast model.

Two-dimensional attention-based multi-input LSTM for time series prediction

  • Kim, Eun Been;Park, Jung Hoon;Lee, Yung-Seop;Lim, Changwon
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.1
    • /
    • pp.39-57
    • /
    • 2021
  • Time series prediction is an area of great interest to many people. Algorithms for time series prediction are widely used in many fields such as stock price, temperature, energy and weather forecast; in addtion, classical models as well as recurrent neural networks (RNNs) have been actively developed. After introducing the attention mechanism to neural network models, many new models with improved performance have been developed; in addition, models using attention twice have also recently been proposed, resulting in further performance improvements. In this paper, we consider time series prediction by introducing attention twice to an RNN model. The proposed model is a method that introduces H-attention and T-attention for output value and time step information to select useful information. We conduct experiments on stock price, temperature and energy data and confirm that the proposed model outperforms existing models.

Prediction of the direction of stock prices by machine learning techniques (기계학습을 활용한 주식 가격의 이동 방향 예측)

  • Kim, Yonghwan;Song, Seongjoo
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.745-760
    • /
    • 2021
  • Prediction of a stock price has been a subject of interest for a long time in financial markets, and thus, many studies have been conducted in various directions. As the efficient market hypothesis introduced in the 1970s acquired supports, it came to be the majority opinion that it was impossible to predict stock prices. However, recent advances in predictive models have led to new attempts to predict the future prices. Here, we summarize past studies on the price prediction by evaluation measures, and predict the direction of stock prices of Samsung Electronics, LG Chem, and NAVER by applying various machine learning models. In addition to widely used technical indicator variables, accounting indicators such as Price Earning Ratio and Price Book-value Ratio and outputs of the hidden Markov Model are used as predictors. From the results of our analysis, we conclude that no models show significantly better accuracy and it is not possible to predict the direction of stock prices with models used. Considering that the models with extra predictors show relatively high test accuracy, we may expect the possibility of a meaningful improvement in prediction accuracy if proper variables that reflect the opinions and sentiments of investors would be utilized.