• 제목/요약/키워드: Stock Prediction

검색결과 290건 처리시간 0.026초

NARX 신경망 최적화를 통한 주가 예측 및 영향 요인에 관한 연구 (A Study on the stock price prediction and influence factors through NARX neural network optimization)

  • 전민종;이욱
    • 한국산학기술학회논문지
    • /
    • 제21권8호
    • /
    • pp.572-578
    • /
    • 2020
  • 주식 시장은 기업 실적 및 경기 상황뿐만 아니라 정치, 사회, 자연재해 등 예기치 못한 요소들에 영향을 받는다. 이런 요소들을 고려한 정확한 예측을 위해서 다양한 기법들이 사용된다. 최근 인공지능 기술이 화두가 되면서 이를 활용한 주가 예측 시도 또한 이루어지고 있다. 본 논문은 단순히 주식 관련 데이터뿐만 아닌, 거시 경제적 지표 등을 활용한 여러 종류의 데이터를 이용하여 주가에 영향을 미치는 요소에 관한 연구를 제안한다. KOSDAQ을 대상으로 1년 치 종가, 외국인 비율, 금리, 환율 데이터를 다양하게 조합한 후에 딥러닝의 Nonlinear AutoRegressive with eXternal input (NARX) 모델을 활용한다. 이 모델을 통해 1달 치 데이터를 생성하고 각 데이터 조합을 통해 만들어진 예측값을 RMSE를 통해 실제값과 비교, 분석한다. 또한, 은닉층에서 뉴런의 수, 지연 시간을 다양하게 설정하여 RMSE를 비교한다. 분석 결과 뉴런은 10개, 지연 시간은 2로 설정하고, 데이터는 미국, 중국, 유럽, 일본 환율의 조합을 사용할 때 RMSE 0.08을 보이며 가장 낮은 오차를 기록하였다. 본 연구는 환율이 주식에 가장 영향을 많이 미친다는 점과 종가 데이터만 사용했을 때의 RMSE 값인 0.589에서 오차를 낮췄다는 점에 의의가 있다.

SNS감성 분석을 이용한 주가 방향성 예측: 네이버 주식토론방 데이터를 이용하여 (Stock Price Prediction Using Sentiment Analysis: from "Stock Discussion Room" in Naver)

  • 김명진;류지혜;차동호;심민규
    • 한국전자거래학회지
    • /
    • 제25권4호
    • /
    • pp.61-75
    • /
    • 2020
  • 주식의 가격을 이해하고 예측하기 위해서 활용되는 데이터의 범위는 기존의 정형화된 데이터에서 비정형화된 다양한 종류의 데이터로 확대되고 있다. 본 연구는 SNS에서 수집된 댓글 데이터가 주식의 미래 가격의 변동에 영향을 미치는지를 조사한다. 가장 많은 주식투자자가 참여하는 커뮤니티인 네이버 주식토론방에서 20개 종목에 대한 6개월 간의 댓글 데이터를 수집하여, 이들 데이터가 1시간 후의 가격 변동의 방향과 가격 변동의 폭에 대한 예측력을 가지는지 조사한다. 예측 관계는 LSTM과 CNN등의 딥뉴럴네트워크 기법을 활용하여 모델링하였다. 20개 종목에 대해 조사하여 13개 종목에서 미래의 주가 이동 방향을 50% 이상의 정확도로 예측할 수 있다는 결과를 얻었고, 16개 종목에서 미래의 주가 변동폭을 50% 이상의 정확도로 예측할 수 있다는 결과를 얻었다. 본 연구는 네이버 주식토론방과 같은 SNS에서 형성된 여론이 주식 종목의 수급에 영향을 주어 가격의 변동 요인으로도 작용할 수 있다는 점을 확인한다.

도시철도차량 운영 및 발주관련 프로그램의 RIMS 적용 (A Study on Application of RIMS for City Rail-road Management and Ordering Programs.)

  • 전서탁;김현철;이도선
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1301-1307
    • /
    • 2008
  • The Seoul-Metro is the first city railroad corporation to operate RIMS(Rolling-stock Information Maintenance System). The development of "RIMS Project" and trial running task were started from Mar 29, 2001. Finally, this project was completed successfully on Dec 31, 2005, as integrated systems including light or heavy maintenance works in Ji-Chuk and Chang-Dong Rolling-stock Offices. After that, from 2006 to Dec 31, 2007, we promoted a this new program to other four rolling-stock offices (Su-Seo, Gun-Ja, Sin-Jeong) and the headquarter. For the duration of trial running, we developed and applied new complementary program having made up for the weak points or defects. The series of new program which were newly developed and applied are comprised of an operation management, trouble management, wheel management, heavy maintenance table automatic creation programs and ordering prediction programs to purchase goods smoothly. The Seoul-Metro have registered these programs(RIMS) to Computer Program Protection Committee. We'd like to introduce a composition of program for enhancement of a city railroad Information Systems.

  • PDF

데이터 증강을 통한 딥러닝 기반 주가 패턴 예측 정확도 향상 방안 (Increasing Accuracy of Stock Price Pattern Prediction through Data Augmentation for Deep Learning)

  • 김영준;김여정;이인선;이홍주
    • 한국빅데이터학회지
    • /
    • 제4권2호
    • /
    • pp.1-12
    • /
    • 2019
  • 인공지능 기술이 발전하면서 이미지, 음성, 텍스트 등 다양한 분야에 적용되고 있으며, 데이터가 충분한 경우 기존 기법들에 비해 좋은 결과를 보인다. 주식시장은 경제, 정치와 같은 많은 변수에 의해 영향을 받기 때문에, 주식 가격의 움직임 예측은 어려운 과제로 알려져 있다. 다양한 기계학습 기법과 인공지능 기법을 이용하여 주가 패턴을 연구하여 주가의 등락을 예측하려는 시도가 있어왔다. 본 연구는 딥러닝 기법 중 컨볼루셔널 뉴럴 네트워크(CNN)를 기반으로 주가 패턴 예측률 향상을 위한 데이터 증강 방안을 제안한다. CNN은 컨볼루셔널 계층을 통해 이미지에서 특징을 추출하여 뉴럴 네트워크를 이용하여 이미지를 분류한다. 따라서, 본 연구는 주식 데이터를 캔들스틱 차트 이미지로 만들어 CNN을 통해 패턴을 예측하고 분류하고자 한다. 딥러닝은 다량의 데이터가 필요하기에, 주식 차트 이미지에 다양한 데이터 증강(Data Augmentation) 방안을 적용하여 분류 정확도를 향상 시키는 방법을 제안한다. 데이터 증강 방안으로는 차트를 랜덤하게 변경하는 방안과 차트에 가우시안 노이즈를 적용하여 추가 데이터를 생성하였으며, 추가 생성된 데이터를 활용하여 학습하고 테스트 집합에 대한 분류 정확도를 비교하였다. 랜덤하게 차트를 변경하여 데이터를 증강시킨 경우의 분류 정확도는 79.92%였고, 가우시안 노이즈를 적용하여 생성된 데이터를 가지고 학습한 경우의 분류 정확도는 80.98%이었다. 주가의 다음날 상승/하락으로 분류하는 경우에는 60분 단위 캔들 차트가 82.60%의 정확도를 기록하였다.

  • PDF

마코프 모델에 기반한 시계열 자료의 모델링 및 예측 (Modeling and Prediction of Time Series Data based on Markov Model)

  • 조영희;이계성
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.225-233
    • /
    • 2011
  • 주식 가격이나 경제 지표, 사회적 현상의 추세나 변화 등은 통상 시간에 따라 변화하기 때문에 시계열 자료로 구분된다. 시계열 자료는 시간 축에 대해 변화하는 자료의 표현 가치뿐 아니라 그 변화 추세나 향후 방향성까지 제시할 수 있다는 점에서 이에 대한 방법론에 대해 많은 연구와 노력이 지속되어 왔다. 본 논문에서는 전통적으로 예측 모형을 구축하여 예측하는 방법을 취하되 그 모형이 복잡하고 정교한 모델을 활용하여 예측 정확도를 높이려는 시도와는 달리 자료 클러스터링 방법과 자료 구간 선정을 통해 예측정확도를 높이려 시도하였다. 기본 모델은 마코프 모델이다. 구간별 유사 구간을 추출하여 모델링하는 구간별 모델링 방법과 클러스터링을 통한 그룹별 모델링을 통해 모델의 예측정확도를 개선하려 시도하였다. 실험을 통해 클러스터링을 거친 그룹별 마코프 모델이 정확도를 개선 시켰으나 예측율은 현저히 떨어지는 결과를 낳았다.

금융 지표와 파라미터 최적화를 통한 로보어드바이저 전략 도출 사례 (A Case of Establishing Robo-advisor Strategy through Parameter Optimization)

  • 강민철;임규건
    • 한국IT서비스학회지
    • /
    • 제19권2호
    • /
    • pp.109-124
    • /
    • 2020
  • Facing the 4th Industrial Revolution era, researches on artificial intelligence have become active and attempts have been made to apply machine learning in various fields. In the field of finance, Robo Advisor service, which analyze the market, make investment decisions and allocate assets instead of people, are rapidly expanding. The stock price prediction using the machine learning that has been carried out to date is mainly based on the prediction of the market index such as KOSPI, and utilizes technical data that is fundamental index or price derivative index using financial statement. However, most researches have proceeded without any explicit verification of the prediction rate of the learning data. In this study, we conducted an experiment to determine the degree of market prediction ability of basic indicators, technical indicators, and system risk indicators (AR) used in stock price prediction. First, we set the core parameters for each financial indicator and define the objective function reflecting the return and volatility. Then, an experiment was performed to extract the sample from the distribution of each parameter by the Markov chain Monte Carlo (MCMC) method and to find the optimum value to maximize the objective function. Since Robo Advisor is a commodity that trades financial instruments such as stocks and funds, it can not be utilized only by forecasting the market index. The sample for this experiment is data of 17 years of 1,500 stocks that have been listed in Korea for more than 5 years after listing. As a result of the experiment, it was possible to establish a meaningful trading strategy that exceeds the market return. This study can be utilized as a basis for the development of Robo Advisor products in that it includes a large proportion of listed stocks in Korea, rather than an experiment on a single index, and verifies market predictability of various financial indicators.

분류 알고리즘 기반 주문 불균형 정보의 단기 주가 예측 성과 (Classification Algorithm-based Prediction Performance of Order Imbalance Information on Short-Term Stock Price)

  • 김선웅
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.157-177
    • /
    • 2022
  • 투자자들은 증권회사가 제공하는 시세표인 Limit Order Book 정보를 통해 국내외 투자자들이 제출하는 주문 정보를 실시간으로 파악하면서 거래에 참여하고 있다. Limit Order Book에 실시간으로 공개되고 있는 주문 정보가 주가 예측에서 유용성이 있을까? 본 연구는 장 중 투자자들의 매수와 매도 주문이 어느 한쪽으로 쏠리면서 주문 불균형이 나타나는 경우 미래 주가 등락의 예측 변수로서 유의성이 있는지를 분석하는 것이다. 분류 알고리즘을 이용하여 주문 불균형 정보의 당일 종가 등락에 대한 예측 정확도를 높이고, 예측 결과를 이용한 데이트레이딩 전략을 제안하며 실증분석을 통해 투자 성과를 분석한다. 자료는 2004년 1월 19일부터 2022년 6월 30일까지의 4,564일 동안의 코스피200 주가지수선물 5 분 봉 주가를 분석하였다. 실증분석 결과는 다음과 같다. 첫째, 총매수 주문량과 총매도 주문량의 불균형 정도로 측정하는 주문 불균형지수와 주가는 유의적 상관성을 보인다. 둘째, 주문 불균형 정보는 당일 종가까지의 미래 주가 등락에 대해서도 유의적인 영향력이 나타났다. 셋째, 주문 불균형 정보를 이용한 당일 종가 등락의 예측 정확도는 Support Vector Machines 알고리즘이 54.1%로 가장 높게 나타났다. 넷째, 하루 중 이른 시점에서 측정한 주문 불균형지수가 늦은 시점에서 측정한 주문 불균형지수보다 예측 정확성이 더 높았다. 다섯째, 종가 등락 예측 결과를 이용한 데이트레이딩 전략의 투자 성과는 비교모형의 투자 성과보다 높게 나타났다. 여섯째, 분류 알고리즘을 이용한 투자 성과는 K-Nearest Neighbor 알고리즘을 제외하면 모두 비교모형보다 총수익 평균이 높게 나타났다. 일곱째, Logistic Regression, Random Forest, Support Vector Machines, XGBoost 알고리즘의 예측 결과를 이용한 데이트레이딩 전략의 투자 성과는 수익성과 위험성을 동시에 평가하는 샤프비율에서도 비교모형보다 높은 결과를 보여주었다. 본 연구는 Limit Order Book 정보 중 총매수 주문량과 총매도 주문량 정보의 경제적 가치가 존재함을 밝혔다는 점에서 기존의 연구와 학술적 차별점을 갖는다. 본 연구의 실증분석 결과는 시장 참여자들에게 투자 전략적 측면에서 함의가 있다고 판단된다. 향후 연구에서는 최근 활발히 연구가 진행되고 있는 딥러닝 모형 등으로의 확장을 통해 주가 예측의 정확도를 높임으로써 데이트레이딩 투자전략의 성과를 개선할 필요가 있다.

철도소음의 예측 (Prediction of Railroad Noise)

  • 강대준
    • 소음진동
    • /
    • 제7권6호
    • /
    • pp.1001-1006
    • /
    • 1997
  • Railroad noise is one of the main causes of environmental impact. Whenever a new railroad line is planned or a housing project near an existing railroad is proposed, an estimate of the relevant noise levels is usually required. For this, it is necessary to quantify those paramters that affect the railroad noise. This paper presents an accurate prediction of railroad noise.

  • PDF

Inter-Level Causal Reasoning in Stock Price Index Prediction Model

  • Kim, Myoung-Jong;Ingoo Han
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1998년도 추계학술대회 논문집
    • /
    • pp.224-227
    • /
    • 1998
  • This paper proposes inter-level causal reasoning to implement synergistic approach. We decompose KOSPI prediction model into economy and industry level. Two kinds of intra-level QCOM are combined in inter-level QCOM via Inter-level relations. Downward reasoning is achieved by propagating the disturbance in the higher level to lower level while upward reasoning is to analyze the reverse cases.

  • PDF

Factors influencing the spatial distribution of soil organic carbon storage in South Korea

  • May Thi Tuyet Do;Min Ho Yeon;Young Hun Kim;Gi Ha Lee
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.167-167
    • /
    • 2023
  • Soil organic carbon (SOC) is a critical component of soil health and is crucial in mitigating climate change by sequestering carbon from the atmosphere. Accurate estimation of SOC storage is essential for understanding SOC dynamics and developing effective soil management strategies. This study aimed to investigate the factors influencing the spatial distribution of SOC storage in South Korea, using bulk density (BD) prediction to estimate SOC stock. The study utilized data from 393 soil series collected from various land uses across South Korea established by Korea Rural Development Administration from 1968-1999. The samples were analyzed for soil properties such as soil texture, pH, and BD, and SOC stock was estimated using a predictive model based on BD. The average SOC stock in South Korea at 30 cm topsoil was 49.1 Mg/ha. The study results revealed that soil texture and land use were the most significant factors influencing the spatial distribution of SOC storage in South Korea. Forested areas had significantly higher SOC storage than other land use types. Climate variables such as temperature and precipitation had a relative influence on SOC storage. The findings of this study provide valuable insights into the factors influencing the spatial distribution of SOC storage in South Korea.

  • PDF