• Title/Summary/Keyword: Stock Prediction

Search Result 290, Processing Time 0.025 seconds

Study on Demand Prediction of Cold Storage Facilities (냉동냉장설비의 수요예측에 관한 연구)

  • Son, Chang-Hyo;Oh, Hoo-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.9
    • /
    • pp.587-594
    • /
    • 2011
  • This paper describes the investigation on current state of cold storage facilities, and analysis on the demand prediction in the near future. And based on the analysis results, we prospect the scale of cold storage facilities in the near future. The main analysis results are summarized by the followings ; The present circumstances of cold storage facility are determined by investigating actual loading capacity, average stock amounts, and return number of cold storage facility. From the results, the present situation for cold storage facility is about 3% over. It is found that the average stock amounts increase gradually, and accordingly that the demand of cold storage facility is predicted to be increased, resulting that the capacity of cold storage facilities in 2013 expects to reach up to 5,250,000 ton. It is considered that the results of demand prediction has significant implications on the management of cold storage facility in the near future.

A Real-Time Stock Market Prediction Using Knowledge Accumulation (지식 누적을 이용한 실시간 주식시장 예측)

  • Kim, Jin-Hwa;Hong, Kwang-Hun;Min, Jin-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.109-130
    • /
    • 2011
  • One of the major problems in the area of data mining is the size of the data, as most data set has huge volume these days. Streams of data are normally accumulated into data storages or databases. Transactions in internet, mobile devices and ubiquitous environment produce streams of data continuously. Some data set are just buried un-used inside huge data storage due to its huge size. Some data set is quickly lost as soon as it is created as it is not saved due to many reasons. How to use this large size data and to use data on stream efficiently are challenging questions in the study of data mining. Stream data is a data set that is accumulated to the data storage from a data source continuously. The size of this data set, in many cases, becomes increasingly large over time. To mine information from this massive data, it takes too many resources such as storage, money and time. These unique characteristics of the stream data make it difficult and expensive to store all the stream data sets accumulated over time. Otherwise, if one uses only recent or partial of data to mine information or pattern, there can be losses of valuable information, which can be useful. To avoid these problems, this study suggests a method efficiently accumulates information or patterns in the form of rule set over time. A rule set is mined from a data set in stream and this rule set is accumulated into a master rule set storage, which is also a model for real-time decision making. One of the main advantages of this method is that it takes much smaller storage space compared to the traditional method, which saves the whole data set. Another advantage of using this method is that the accumulated rule set is used as a prediction model. Prompt response to the request from users is possible anytime as the rule set is ready anytime to be used to make decisions. This makes real-time decision making possible, which is the greatest advantage of this method. Based on theories of ensemble approaches, combination of many different models can produce better prediction model in performance. The consolidated rule set actually covers all the data set while the traditional sampling approach only covers part of the whole data set. This study uses a stock market data that has a heterogeneous data set as the characteristic of data varies over time. The indexes in stock market data can fluctuate in different situations whenever there is an event influencing the stock market index. Therefore the variance of the values in each variable is large compared to that of the homogeneous data set. Prediction with heterogeneous data set is naturally much more difficult, compared to that of homogeneous data set as it is more difficult to predict in unpredictable situation. This study tests two general mining approaches and compare prediction performances of these two suggested methods with the method we suggest in this study. The first approach is inducing a rule set from the recent data set to predict new data set. The seocnd one is inducing a rule set from all the data which have been accumulated from the beginning every time one has to predict new data set. We found neither of these two is as good as the method of accumulated rule set in its performance. Furthermore, the study shows experiments with different prediction models. The first approach is building a prediction model only with more important rule sets and the second approach is the method using all the rule sets by assigning weights on the rules based on their performance. The second approach shows better performance compared to the first one. The experiments also show that the suggested method in this study can be an efficient approach for mining information and pattern with stream data. This method has a limitation of bounding its application to stock market data. More dynamic real-time steam data set is desirable for the application of this method. There is also another problem in this study. When the number of rules is increasing over time, it has to manage special rules such as redundant rules or conflicting rules efficiently.

A study on stock price prediction system based on text mining method using LSTM and stock market news (LSTM과 증시 뉴스를 활용한 텍스트 마이닝 기법 기반 주가 예측시스템 연구)

  • Hong, Sunghyuck
    • Journal of Digital Convergence
    • /
    • v.18 no.7
    • /
    • pp.223-228
    • /
    • 2020
  • The stock price reflects people's psychology, and factors affecting the entire stock market include economic growth rate, economic rate, interest rate, trade balance, exchange rate, and currency. The domestic stock market is heavily influenced by the stock index of the United States and neighboring countries on the previous day, and the representative stock indexes are the Dow index, NASDAQ, and S & P500. Recently, research on stock price analysis using stock news has been actively conducted, and research is underway to predict the future based on past time series data through artificial intelligence-based analysis. However, even if the stock market is hit for a short period of time by the forecasting system, the market will no longer move according to the short-term strategy, and it will have to change anew. Therefore, this model monitored Samsung Electronics' stock data and news information through text mining, and presented a predictable model by showing the analyzed results.

S & P 500 Stock Index' Futures Trading with Neural Networks (신경망을 이용한 S&P 500 주가지수 선물거래)

  • Park, Jae-Hwa
    • Journal of Intelligence and Information Systems
    • /
    • v.2 no.2
    • /
    • pp.43-54
    • /
    • 1996
  • Financial markets are operating 24 hours a day throughout the world and interrelated in increasingly complex ways. Telecommunications and computer networks tie together markets in the from of electronic entities. Financial practitioners are inundated with an ever larger stream of data, produced by the rise of sophisticated database technologies, on the rising number of market instruments. As conventional analytic techniques reach their limit in recognizing data patterns, financial firms and institutions find neural network techniques to solve this complex task. Neural networks have found an important niche in financial a, pp.ications. We a, pp.y neural networks to Standard and Poor's (S&P) 500 stock index futures trading to predict the futures marker behavior. The results through experiments with a commercial neural, network software do su, pp.rt future use of neural networks in S&P 500 stock index futures trading.

  • PDF

Is it possible to forecast KOSPI direction using deep learning methods?

  • Choi, Songa;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.4
    • /
    • pp.329-338
    • /
    • 2021
  • Deep learning methods have been developed, used in various fields, and they have shown outstanding performances in many cases. Many studies predicted a daily stock return, a classic example of time-series data, using deep learning methods. We also tried to apply deep learning methods to Korea's stock market data. We used Korea's stock market index (KOSPI) and several individual stocks to forecast daily returns and directions. We compared several deep learning models with other machine learning methods, including random forest and XGBoost. In regression, long short term memory (LSTM) and gated recurrent unit (GRU) models are better than other prediction models. For the classification applications, there is no clear winner. However, even the best deep learning models cannot predict significantly better than the simple base model. We believe that it is challenging to predict daily stock return data even if we use the latest deep learning methods.

Stock Prediction Method using Case-based Learning (사례기반학습을 이용한 주식 데이터 예측 방법)

  • Kim, Ju-Hyun;Jeon, Min-Soo;Jung, Yong-Gyu
    • Journal of Service Research and Studies
    • /
    • v.1 no.1
    • /
    • pp.71-79
    • /
    • 2011
  • In recent years, a number of people are going more and more to develope and engage in stock and equity-related information and related industry. a lot of stock expection programs came out, but they are still unstable, especially predictions methods and reality is unfounded. In this paper, we have vast amounts of stock data, shares many of the changes affecting the width of the survey items, and should seek the weights. This is related to existing stock levels and categories and is another way. Results based on a systematic classification of the stock data that would like to introduce objectivity

  • PDF

A Study on the Effects of Advance and Discount Sales of Seasonal Products by Subscription on Logistics Costs (계절상품의 사전 예약판매가 물류비용에 미치는 영향에 관한 연구)

  • Kim, Byeongchan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.219-230
    • /
    • 2015
  • It is difficult to make plans about the production schedule and volume of seasonal products due to the huge uncertainty in the prediction of their demands, which is why the amounts of carryover seasonal products increase after the peak season. Traditional models fail to meet the important requirements of production and stock plans related to the enhanced efficiency of logistics system due to the reduced value of carryover products by the disposal based on large discounts and deterioration, which poses considerable difficulties with actual problem solving. This study examined the stages of product storage from the specialized factory warehouses during a low season through the stores and the warehouses of local distribution centers during a high season to stock disposal and carryover product warehouses after a high season. The study developed a model for logistics rationalization plans to minimize carryover products by advance selling new products by subscription during a low season in anticipation of high season demands, increasing the accuracy of demands prediction, and making stable production plans, as well as demonstrated its excellence through numerical analysis.

Environmental Noise Prediction using Scale Model: A Measurement Methodology

  • Kim, Tae-Min;Han, Jae-Hyun;Kim, Jeung-Tae
    • International Journal of Railway
    • /
    • v.4 no.2
    • /
    • pp.42-49
    • /
    • 2011
  • Today, rolling stock has become a fast and convenient mode of transportation and has witnessed increased demand. But the speed improvement has resulted in increased aerodynamic noise and therefore residential districts near the railroad tracks are exposed to ever increasing noise level. A study on methodologies for measuring and appraising rolling stock's environmental noise has therefore become an important area of endeavor. In the case of the environmental noise, there are no changes in tone so prediction can be made by reducing areas around the railway. The present study explores estimation of the noise around the railway using scale model, and the source of the noise has been investigated as well. The scale model of rolling stock will have to be able to measure high frequency noise and it is required to be generated in a short amount of time. Since popping a balloon or firing a gun fits this requirement the present study analyzed the characteristics of these two different noise sources. Measurement was made in a large vacant lot and the reflection due to the ground was also examined. The method proposed here can be used in the future for predicting the environmental noise of railway vehicles.

The Effect of Data Size on the k-NN Predictability: Application to Samsung Electronics Stock Market Prediction (데이터 크기에 따른 k-NN의 예측력 연구: 삼성전자주가를 사례로)

  • Chun, Se-Hak
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.239-251
    • /
    • 2019
  • Statistical methods such as moving averages, Kalman filtering, exponential smoothing, regression analysis, and ARIMA (autoregressive integrated moving average) have been used for stock market predictions. However, these statistical methods have not produced superior performances. In recent years, machine learning techniques have been widely used in stock market predictions, including artificial neural network, SVM, and genetic algorithm. In particular, a case-based reasoning method, known as k-nearest neighbor is also widely used for stock price prediction. Case based reasoning retrieves several similar cases from previous cases when a new problem occurs, and combines the class labels of similar cases to create a classification for the new problem. However, case based reasoning has some problems. First, case based reasoning has a tendency to search for a fixed number of neighbors in the observation space and always selects the same number of neighbors rather than the best similar neighbors for the target case. So, case based reasoning may have to take into account more cases even when there are fewer cases applicable depending on the subject. Second, case based reasoning may select neighbors that are far away from the target case. Thus, case based reasoning does not guarantee an optimal pseudo-neighborhood for various target cases, and the predictability can be degraded due to a deviation from the desired similar neighbor. This paper examines how the size of learning data affects stock price predictability through k-nearest neighbor and compares the predictability of k-nearest neighbor with the random walk model according to the size of the learning data and the number of neighbors. In this study, Samsung electronics stock prices were predicted by dividing the learning dataset into two types. For the prediction of next day's closing price, we used four variables: opening value, daily high, daily low, and daily close. In the first experiment, data from January 1, 2000 to December 31, 2017 were used for the learning process. In the second experiment, data from January 1, 2015 to December 31, 2017 were used for the learning process. The test data is from January 1, 2018 to August 31, 2018 for both experiments. We compared the performance of k-NN with the random walk model using the two learning dataset. The mean absolute percentage error (MAPE) was 1.3497 for the random walk model and 1.3570 for the k-NN for the first experiment when the learning data was small. However, the mean absolute percentage error (MAPE) for the random walk model was 1.3497 and the k-NN was 1.2928 for the second experiment when the learning data was large. These results show that the prediction power when more learning data are used is higher than when less learning data are used. Also, this paper shows that k-NN generally produces a better predictive power than random walk model for larger learning datasets and does not when the learning dataset is relatively small. Future studies need to consider macroeconomic variables related to stock price forecasting including opening price, low price, high price, and closing price. Also, to produce better results, it is recommended that the k-nearest neighbor needs to find nearest neighbors using the second step filtering method considering fundamental economic variables as well as a sufficient amount of learning data.

A Study on USA, Japan and India Stock Market Integration - Focused on Transmission Mechanism - (미국, 일본, 인도 증권시장 통합에 관한 연구 - 정보전달 메카니즘을 중심으로 -)

  • Yi, Dong-Wook
    • International Area Studies Review
    • /
    • v.13 no.2
    • /
    • pp.255-276
    • /
    • 2009
  • This article has examined the international transmission of returns among S&P500, Nikkei225 and SENSEX stock index cash markets using the daily closing prices covered from January 4, 2002 to February 6, 2009. For this purpose we employed dynamic time series models such as the Granger causality analysis and variance decomposition analysis based on VAR model. The main empirical results are as follows; First, according to Granger causality tests we find that S&P500 stock index has a significant prediction power on the changes of SENSEX and Nikkei225 stock index market and vice versa. However, US stock market's influence is dominant to the other stock markets at a significant level statistically. Second, according to variance decomposition, SENSEX stock index is more sensitive to the movement of S&P500 than that of Nikkei225 stock index. These kinds of empirical results shows that the three stock markets are integrated over times and these results will be informative for the international investors to build the world-wide investment portfolio and risk management strategies, etc.