• 제목/요약/키워드: Stock Index Prediction

검색결과 96건 처리시간 0.021초

신경망을 이용한 산업주가수익율의 예측 (Industry Stock Returns Prediction Using Neural Networks)

  • 권영삼;한인구
    • Asia pacific journal of information systems
    • /
    • 제9권3호
    • /
    • pp.93-110
    • /
    • 1999
  • The previous studies regarding the stock returns have advocated that industry effects exist over entire industry. As the industry categories are more rigid, the demand for predicting the industry sectors is rapidly increasing. The advances in Artificial Intelligence and Neural Networks suggest the feasibility of a valuable computational model for stock returns prediction. We propose a sector-factor model for predicting the return on industry stock index using neural networks. As a substitute for the traditional models, neural network model may be more accurate and effective alternative when the dynamics between the underlying industry features are not well known or when the industry specific asset pricing equation cannot be solved analytically. To assess the potential value of neural network model, we simulate the resulting network and show that the proposed model can be used successfully for banks and general construction industry. For comparison, we estimate models using traditional statistical method of multiple regression. To illustrate the practical relevance of neural network model, we apply it to the predictions of two industry stock indexes from 1980 to 1995.

  • PDF

실시간 거시지표 예측과 증시뉴스 마이닝을 통한 주가 예측시스템 모델연구 (Research model on stock price prediction system through real-time Macroeconomics index and stock news mining analysis)

  • 홍성혁
    • 한국융합학회논문지
    • /
    • 제12권7호
    • /
    • pp.31-36
    • /
    • 2021
  • 중국 우한발 코로나 19 바이러스로 인하여 세계 경제가 침체하여, 미국연방준비제도를 비롯한 대부분 국가에서는 통화량을 늘려 경기를 부양하는 정책을 내놓았다. 주식 투자자들 대부분은 기업에 대한 재무제표 분석이 없이 유명 유튜버의 추천종목이나 지인의 말만 듣고 투자하는 경향이 있어서 주식투자의 손실 가능성이 크다. 따라서, 본 연구에서는 기존 자동매매 조건에서 발전된 인공지능 딥러닝 기법을 이용하여 주가에 영향을 미치는 거시지표를 분석하고 예측하여 주가에 미치는 상관관계를 통한 개별주가예측에 가중치를 부여하고 주가를 예측한다. 또한, 주가는 실시간 증시뉴스에 민감하게 반응하기 때문에 증시뉴스 텍스트 마이닝을 통하여 인공지능으로 예측된 주가에 가중치를 반영하여 더 정확한 주가 예측을 하여 주식 투자자에게 매매의 판단 근거를 제공하여 건전한 주식투자가 되도록 이바지하였다.

입력변수 및 학습사례 선정을 동시에 최적화하는 GA-MSVM 기반 주가지수 추세 예측 모형에 관한 연구 (A Study on the Prediction Model of Stock Price Index Trend based on GA-MSVM that Simultaneously Optimizes Feature and Instance Selection)

  • 이종식;안현철
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.147-168
    • /
    • 2017
  • 오래 전부터 학계에서는 정확한 주식 시장의 예측에 대한 많은 연구가 진행되어 왔고 현재에도 다양한 기법을 응용한 예측모형들이 연구되고 있다. 특히 최근에는 딥러닝(Deep-Learning)을 포함한 다양한 기계학습기법(Machine Learning Methods)을 이용해 주가지수를 예측하려는 많은 시도들이 진행되고 있다. 전통적인 주식투자거래의 분석기법으로는 기본적 분석과 기술적 분석방법이 사용되지만 보다 단기적인 거래예측이나 통계학적, 수리적 기법을 응용하기에는 기술적 분석 방법이 보다 유용한 측면이 있다. 이러한 기술적 지표들을 이용하여 진행된 대부분의 연구는 미래시장의 (보통은 다음 거래일) 주가 등락을 이진분류-상승 또는 하락-하여 주가를 예측하는 모형을 연구한 것이다. 하지만 이러한 이진분류로는 추세를 예측하여 매매시그널을 파악하거나, 포트폴리오 리밸런싱(Portfolio Rebalancing)의 신호로 삼기에는 적합치 않은 측면이 많은 것 또한 사실이다. 이에 본 연구에서는 기존의 주가지수 예측방법인 이진 분류 (binary classification) 방법에서 주가지수 추세를 (상승추세, 박스권, 하락추세) 다분류 (multiple classification) 체계로 확장하여 주가지수 추세를 예측하고자 한다. 이러한 다 분류 문제 해결을 위해 기존에 사용하던 통계적 방법인 다항로지스틱 회귀분석(Multinomial Logistic Regression Analysis, MLOGIT)이나 다중판별분석(Multiple Discriminant Analysis, MDA) 또는 인공신경망(Artificial Neural Networks, ANN)과 같은 기법보다는 예측성과의 우수성이 입증된 다분류 Support Vector Machines(Multiclass SVM, MSVM)을 사용하고, 이 모델의 성능을 향상시키기 위한 래퍼(wrapper)로서 유전자 알고리즘(Genetic Algorithm)을 이용한 최적화 모델을 제안한다. 특히 GA-MSVM으로 명명된 본 연구의 제안 모형에서는 MSVM의 커널함수 매개변수, 그리고 최적의 입력변수 선택(feature selection) 뿐만이 아니라 학습사례 선택(instance selection)까지 최적화하여 모델의 성능을 극대화 하도록 설계하였다. 제안 모형의 성능을 검증하기 위해 국내주식시장의 실제 데이터를 적용해본 결과 ANN이나 CBR, MLOGIT, MDA와 같은 기존 데이터마이닝 기법들이나 인공지능 알고리즘은 물론 현재까지 가장 우수한 예측 성과를 나타내는 것으로 알려져 있던 전통적인 다분류 SVM 보다도 제안 모형이 보다 우수한 예측성과를 보임을 확인할 수 있었다. 특히 주가지수 추세 예측에 있어서 학습사례의 선택이 매우 중요한 역할을 하는 것으로 확인 되었으며, 모델의 성능의 개선효과에 다른 요인보다 중요한 요소임을 확인할 수 있었다.

Quantitative Causal Reasoning in Stock Price Index Prediction Model

  • Kim, Myoung-Joon;Ingoo Han
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1998년도 추계학술대회 논문집
    • /
    • pp.228-231
    • /
    • 1998
  • Artificial Intelligence literatures have recognized that stock market is a highly unstructured and complex domain so that it is difficult to find knowledge that belongs to that domain. This paper demonstrates that the proposed QCOM can derive global knowledge about stock market on the basis of a set of local knowledge and express it as a digraph representation. In addition, inference mechanism using quantitative causal reasoning can describe the qualitative and quantitative effects of exogenous variables on stock market.

  • PDF

신경 회로망과 통계적 기법을 이용한 종합주가지수 예측 모형의 개발 (Development of the KOSPI (Korea Composite Stock Price Index) forecast model using neural network and statistical methods))

  • 이은진;민철홍;김태선
    • 전자공학회논문지CI
    • /
    • 제45권5호
    • /
    • pp.95-101
    • /
    • 2008
  • 주가지수는 경제 및 정치적 상황을 포함한 다양한 주변 환경에 영향을 받는 관계로 정확한 주가지수 예측모형의 개발은 매우 어려운 문제로 여겨지고 있다. 본 논문에서는, 신경회로망과 통계적인 방법을 이용하여 종합주가지수(KOSPI)를 예측하는 에이전트 시스템 기법을 제안한다. 예측오차의 평균 및 편차를 최소화하기 위해서, 에이전트시스템은 특징추출, 변수선정, 예측 엔진선정 및 분석을 위한 부(sub)에이전트 모듈들을 포함하고 있다. KOSPI(Korea Composite Stock Price Index) 예측을 위한 에이전트시스템 구현의 첫 번째 단계로서, 주성분분석을 이용하여 22개의 표준기본경제지표에서 12개의 경제지표를 추출하였다. 열두 개의 추출된 경제지표들은 예측하고자하는 예측일에 따라 최량부분적합법을 이용하여 다시 한 번 입력 변수들을 선정하게 된다. 성능평가를 위해 주가지수의 변동폭이 다른 두 종류의 실험데이터를 대상으로 예측을 진행한 결과 30일의 연속적인 종합주가지수예측에 있어 11.92포인트의 평균오차율을 보였다. 또한, 예측시점에 따라 관련이 높은 기본지표의 종류 및 개수가 다르게 나타나므로 제안한 주가예측 에이전트시스템 구조가 유용함을 보였다.

Mean-VaR Portfolio: An Empirical Analysis of Price Forecasting of the Shanghai and Shenzhen Stock Markets

  • Liu, Ximei;Latif, Zahid;Xiong, Daoqi;Saddozai, Sehrish Khan;Wara, Kaif Ul
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1201-1210
    • /
    • 2019
  • Stock price is characterized as being mutable, non-linear and stochastic. These key characteristics are known to have a direct influence on the stock markets globally. Given that the stock price data often contain both linear and non-linear patterns, no single model can be adequate in modelling and predicting time series data. The autoregressive integrated moving average (ARIMA) model cannot deal with non-linear relationships, however, it provides an accurate and effective way to process autocorrelation and non-stationary data in time series forecasting. On the other hand, the neural network provides an effective prediction of non-linear sequences. As a result, in this study, we used a hybrid ARIMA and neural network model to forecast the monthly closing price of the Shanghai composite index and Shenzhen component index.

퍼지 모델에 기초한 시계열 주가 예측 (Time Series Stock Prices Prediction Based On Fuzzy Model)

  • 황희수;오진성
    • 한국지능시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.689-694
    • /
    • 2009
  • 본 논문은 일별 및 주별로 시계열 주가를 예측할 수 있는 퍼지 모델을 구성하는 방법을 제안한다. 전통적인 시계열 분석으로 주가를 예측하는 것은 어렵지만 퍼지 모델은 비선형적인 주가 데이터의 특성을 잘 기술할 수 있는 장점을 갖고 있다. 주가 예측 모델에 사용될 입력 정보를 결정하는 데는 상당한 수고가 필요한데, 본 논문에서는 전통적인 캔들 스틱 차트의 정보를 입력변수로 고려한다. 주가 예측 퍼지 모델은 사다리꼴 멤버쉽함수를 갖는 전건부와 비선형식인 후건부로 된 퍼지 규칙으로 구성된다. 차분 진화를 통해 퍼지 모델은 최적화된다. 일별 및 주별로 코스피 지수의 시가, 고가, 저가 및 종가를 예측하는 모델을 만들고 그 성능을 평가한다.

자료편집기법과 사례기반추론을 이용한 재무예측시스템 (Financial Forecasting System using Data Editing Technique and Case-based Reasoning)

  • 김경재
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.283-286
    • /
    • 2007
  • This paper proposes a genetic algorithm (GA) approach to instance selection in case-based reasoning (CBR) for the prediction of Korea Stock Price Index (KOSPI). CBR has been widely used in various areas because of its convenience and strength in complex problem solving. Nonetheless, compared to other machine learning techniques, CBR has been criticized because of its low prediction accuracy. Generally, in order to obtain successful results from CBR, effective retrieval of useful prior cases for the given problem is essential. However, designing a good matching and retrieval mechanism for CBR systems is still a controversial research issue. In this paper, the GA optimizes simultaneously feature weights and a selection task for relevant instances for achieving good matching and retrieval in a CBR system. This study applies the proposed model to stock market analysis. Experimental results show that the GA approach is a promising method for instance selection in CBR.

  • PDF

A Comparative Study on the Prediction of KOSPI 200 Using Intelligent Approaches

  • Bae, Hyeon;Kim, Sung-Shin;Kim, Hae-Gyun;Woo, Kwang-Bang
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권1호
    • /
    • pp.7-12
    • /
    • 2003
  • In recent years, many attempts have been made to predict the behavior of bonds, currencies, stock or other economic markets. Most previous experiments used the neural network models for the stock market forecasting. The KOSPI 200 (Korea Composite Stock Price Index 200) is modeled by using different neural networks and fuzzy logic. In this paper, the neural network, the dynamic polynomial neural network (DPNN) and the fuzzy logic employed for the prediction of the KOSPI 200. The prediction results are compared by the root mean squared error (RMSE) and scatter plot, respectively. The results show that the performance of the fuzzy system is little bit worse than that of the DPNN but better than that of the neural network. We can develop the desired fuzzy system by optimization methods.

금융 지표와 파라미터 최적화를 통한 로보어드바이저 전략 도출 사례 (A Case of Establishing Robo-advisor Strategy through Parameter Optimization)

  • 강민철;임규건
    • 한국IT서비스학회지
    • /
    • 제19권2호
    • /
    • pp.109-124
    • /
    • 2020
  • Facing the 4th Industrial Revolution era, researches on artificial intelligence have become active and attempts have been made to apply machine learning in various fields. In the field of finance, Robo Advisor service, which analyze the market, make investment decisions and allocate assets instead of people, are rapidly expanding. The stock price prediction using the machine learning that has been carried out to date is mainly based on the prediction of the market index such as KOSPI, and utilizes technical data that is fundamental index or price derivative index using financial statement. However, most researches have proceeded without any explicit verification of the prediction rate of the learning data. In this study, we conducted an experiment to determine the degree of market prediction ability of basic indicators, technical indicators, and system risk indicators (AR) used in stock price prediction. First, we set the core parameters for each financial indicator and define the objective function reflecting the return and volatility. Then, an experiment was performed to extract the sample from the distribution of each parameter by the Markov chain Monte Carlo (MCMC) method and to find the optimum value to maximize the objective function. Since Robo Advisor is a commodity that trades financial instruments such as stocks and funds, it can not be utilized only by forecasting the market index. The sample for this experiment is data of 17 years of 1,500 stocks that have been listed in Korea for more than 5 years after listing. As a result of the experiment, it was possible to establish a meaningful trading strategy that exceeds the market return. This study can be utilized as a basis for the development of Robo Advisor products in that it includes a large proportion of listed stocks in Korea, rather than an experiment on a single index, and verifies market predictability of various financial indicators.