• Title/Summary/Keyword: Stock Index Prediction

Search Result 96, Processing Time 0.027 seconds

A Novel Parameter Initialization Technique for the Stock Price Movement Prediction Model

  • Nguyen-Thi, Thu;Yoon, Seokhoon
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.132-139
    • /
    • 2019
  • We address the problem about forecasting the direction of stock price movement in the Korea market. Recently, the deep neural network is popularly applied in this area of research. In deep neural network systems, proper parameter initialization reduces training time and improves the performance of the model. Therefore, in our study, we propose a novel parameter initialization technique and apply this technique for the stock price movement prediction model. Specifically, we design a framework which consists of two models: a base model and a main prediction model. The base model constructed with LSTM is trained by using the large data which is generated by a large amount of the stock data to achieve optimal parameters. The main prediction model with the same architecture as the base model uses the optimal parameter initialization. Thus, the main prediction model is trained by only using the data of the given stock. Moreover, the stock price movements can be affected by other related information in the stock market. For this reason, we conducted our research with two types of inputs. The first type is the stock features, and the second type is a combination of the stock features and the Korea Composite Stock Price Index (KOSPI) features. Empirical results conducted on the top five stocks in the KOSPI list in terms of market capitalization indicate that our approaches achieve better predictive accuracy and F1-score comparing to other baseline models.

Two-Stage forecasting Using Change-Point Detection and Artificial Neural Networks for Stock Price Index

  • Oh, Kyong-Joo;Kim, Kyoung-Jae;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.427-436
    • /
    • 2000
  • The prediction of stock price index is a very difficult problem because of the complexity of the stock market data it data. It has been studied by a number of researchers since they strong1y affect other economic and financial parameters. The movement of stock price index has a series of change points due to the strategies of institutional investors. This study presents a two-stage forecasting model of stock price index using change-point detection and artificial neural networks. The basic concept of this proposed model is to obtain Intervals divided by change points, to identify them as change-point groups, and to use them in stock price index forecasting. First, the proposed model tries to detect successive change points in stock price index. Then, the model forecasts the change-point group with the backpropagation neural network (BPN). Fina1ly, the model forecasts the output with BPN. This study then examines the predictability of the integrated neural network model for stock price index forecasting using change-point detection.

  • PDF

Using Genetic Algorithms to Support Artificial Neural Networks for the Prediction of the Korea stock Price Index

  • Kim, Kyoung-jae;Ingoo han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.04a
    • /
    • pp.347-356
    • /
    • 2000
  • This paper compares four models of artificial neural networks (ANN) supported by genetic algorithms the prediction of stock price index. Previous research proposed many hybrid models of ANN and genetic algorithms(GA) in order to train the network, to select the feature subsets, and to optimize the network topologies. Most these studies, however, only used GA to improve a part of architectural factors of ANN. In this paper, GA simultaneously optimized multiple factors of ANN. Experimental results show that GA approach to simultaneous optimization for ANN (SOGANN3) outperforms the other approaches.

  • PDF

LSTM-based Prediction Performance of COVID-19 Fear Index on Stock Prices: Untact Stocks versus Contact Stocks (LSTM 기반 COVID-19 공포지수의 주가 예측 성과: 언택트 주식과 콘택트 주식)

  • Kim, Sun Woong
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.8
    • /
    • pp.329-338
    • /
    • 2022
  • As the non-face-to-face economic situation developed due to the COVID-19 pandemic, untact stock groups appeared in the stock market. This study proposed the Korea COVID-19 fear index following the spread of infectious diseases in the COVID-19 pandemic situation and analyzed the influence on the untact stock and contact stock returns. The results of the empirical analysis are as follows. First, as a result of the Granger causality analysis using the Korea COVID-19 fear index, significant causality was found in the return of contact stocks such as Korean Air, Hana Tour, CJ CGV, and Paradise. Second, as a result of stock price prediction based on the LSTM model, Kakao, Korean Air, and Naver's prediction performance was high. Third, the investment performances of the Alexander filter entry rule using the predicted stock price were high in Naver futures and Kakao futures. This study can find a difference from previous studies in that it analyzed the influence of the spread of the COVID-19 pandemic on untact and contact stocks in the COVID-19 situation where the non-face-to-face economy is in full swing.

Stock-Index Prediction using Fuzzy System and Knowledge Information (퍼지시스템과 지식정보를 이용한 주가지수 예측)

  • Kim, Hae-Gyun;Kim, Sung-Shin
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2030-2032
    • /
    • 2001
  • In recent years, many attempts have been made to predict the behavior of bonds, currencies, stock, or other economic markets. Most previous experiments used multilayer perceptrons(MLP) for stock market forecasting. The Kospi 200 Index is modeled using different neural networks and fuzzy system predictions. In this paper, a multilayer perceptron architecture, a dynamic polynomial neural network(DPNN) and a fuzzy system are used to predict the Kospi 200 index. The results of prediction is compared with the root mean squared error(RMSE) and the scatter plot. Results show that both networks can be trained to predict the index. And the fuzzy system is performing slightly better than DPNN and MLP.

  • PDF

Application of Support Vector Machines to the Prediction of KOSPI

  • Kim, Kyoung-jae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.329-337
    • /
    • 2003
  • Stock market prediction is regarded as a challenging task of financial time-series prediction. There have been many studies using artificial neural networks in this area. Recently, support vector machines (SVMs) are regarded as promising methods for the prediction of financial time-series because they me a risk function consisting the empirical ewer and a regularized term which is derived from the structural risk minimization principle. In this study, I apply SVM to predicting the Korea Composite Stock Price Index (KOSPI). In addition, this study examines the feasibility of applying SVM in financial forecasting by comparing it with back-propagation neural networks and case-based reasoning. The experimental results show that SVM provides a promising alternative to stock market prediction.

  • PDF

Prediction of Monthly Transition of the Composition Stock Price Index Using Error Back-propagation Method (신경회로망을 이용한 종합주가지수의 변화율 예측)

  • Roh, Jong-Lae;Lee, Jong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.896-899
    • /
    • 1991
  • This paper presents the neural network method to predict the Korea composition stock price index. The error back-propagation method is used to train the multi-layer perceptron network. Ten of the various economic indices of the past 7 Nears are used as train data and the monthly transition of the composition stock price index is represented by five output neurons. Test results of this method using the data of the last 18 months are very encouraging.

  • PDF

Daily Stock Price Prediction Using Fuzzy Model (퍼지 모델을 이용한 일별 주가 예측)

  • Hwang, Hee-Soo
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.603-608
    • /
    • 2008
  • In this paper an approach to building fuzzy model to predict daily open, close, high, and low stock prices is presented. One of prior problems in building a stock prediction model is to select most effective indicators for the stock prediction. The problem is overcome by the selection of information used in the analysis of stick-chart as the input variables of our fuzzy model. The fuzzy rules have the premise and the consequent, in which they are composed of trapezoidal membership functions, and nonlinear equations, respectively. DE(Differential Evolution) searches optimal fuzzy rules through an evolutionary process. To evaluate the effectiveness of the proposed approach numerical example is considered. The fuzzy models to predict open, high, low, and close prices of KOSPI(KOrea composite Stock Price Index) on a daily basis are built, and their performances are demonstrated and compared with those of neural network.

Fuzzy System and Knowledge Information for Stock-Index Prediction

  • Kim, Hae-Gyun;Bae, Hyeon;Kim, Sung-Shin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.172.6-172
    • /
    • 2001
  • In recent years, many attempts have been made to predict the behavior of bonds, currencies, stock, or other economic markets. Most previous experiments used multilayer perceptrons(MLP) for stock market forecasting, The Kospi 200 Index is modeled using different neural networks and fuzzy system predictions. In this paper, a multilayer perceptron architecture, a dynamic polynomial neural network(DPNN) and a fuzzy system are used to predict the Kospi 200 index. The results of prediction is compared with the root mean squared error(RMSE) and the scatter plot. The results show that the fuzzy system is performing slightly better than DPNN and MLP. We can develop the desired fuzzy system by learning methods ...

  • PDF

A Study on the Prediction of Stock Return in Korea's Distribution Industry Using the VKOSPI Index

  • Jeong-Hwan LEE;Gun-Hee LEE;Sam-Ho SON
    • Journal of Distribution Science
    • /
    • v.21 no.5
    • /
    • pp.101-111
    • /
    • 2023
  • Purpose: The purpose of this paper is to examine the effect of the VKOSPI index on short-term stock returns after a large-scale stock price shock of individual stocks of firms in the distribution industry in Korea. Research design, data, and methodology: This study investigates the effect of the change of the VKOSPI index or investor mood on abnormal returns after the event date from January 2004 to July 2022. The significance of the abnormal return, which is obtained by subtracting the rate of return estimated by the market model from the rate of actual return on each trading day after the event date, is determined based on T-test and multifactor regression analysis. Results: In Korea's distribution industry, the simultaneous occurrence of a bad investor mood and a large stock price decline, leads to stock price reversals. Conversely, the simultaneous occurrence of a good investor mood and a large-scale stock price rise leads to stock price drifts. We found that the VKOSPI index has strong explanatory power for these reversals and drifts even after considering both company-specific and event-specific factors. Conclusions: In Korea's distribution industry-related stock market, investors show an asymmetrical behavioral characteristic of overreacting to negative moods and underreacting to positive moods.