• 제목/요약/키워드: Stock Futures Market

검색결과 59건 처리시간 0.03초

신경망을 이용한 S&P 500 주가지수 선물거래 (S & P 500 Stock Index' Futures Trading with Neural Networks)

  • Park, Jae-Hwa
    • 지능정보연구
    • /
    • 제2권2호
    • /
    • pp.43-54
    • /
    • 1996
  • Financial markets are operating 24 hours a day throughout the world and interrelated in increasingly complex ways. Telecommunications and computer networks tie together markets in the from of electronic entities. Financial practitioners are inundated with an ever larger stream of data, produced by the rise of sophisticated database technologies, on the rising number of market instruments. As conventional analytic techniques reach their limit in recognizing data patterns, financial firms and institutions find neural network techniques to solve this complex task. Neural networks have found an important niche in financial a, pp.ications. We a, pp.y neural networks to Standard and Poor's (S&P) 500 stock index futures trading to predict the futures marker behavior. The results through experiments with a commercial neural, network software do su, pp.rt future use of neural networks in S&P 500 stock index futures trading.

  • PDF

KOSPI 200 선물의 거래활동과 현물 주식시장의 변동성 (KOSPI 200 Futures Trading Activities and Stock Market Volatility)

  • 김민호;;오현탁
    • 재무관리연구
    • /
    • 제20권2호
    • /
    • pp.235-261
    • /
    • 2003
  • 본 연구의 목적은 우리나라에서 주가지수선물이 처음 거래된 1996년 5월 이래 선물의 거래활동과 현물주식시장 변동성의 관계를 분석하는 것이다. 이를 위하여 본 연구는 선물시장 활동 정도를 보여주는 거래량 및 미결제약정수량과 현물 주식시장의 변동성 사이의 동시적 관계 및 인과관계를 규명하고, 추가적으로 주가지수선물의 만기에 따른 현물의 변동성 변화를 살펴보았다. 선물의 거래량과 미결제약정수량은 과거의 자료로부터 예측가능한 부분과 예측불가능한 부분으로 나누어 측정하였고, 현물의 변동성은 GJR-GARCH 모형으로 추정하였다. 선물거래활동과 현물의 변동성의 동시대적 관계 검증 결과, 예측가능 거래량은 예측불가능 거래활동의 일중 변동성과 매우 강한 양의 관계를 가지고 있음을 볼 수 있었다. 반면 선물 거래활동은 대체적으로 현물 변동성과 약한 음의 관계에 있거나 유의하지 않았다. 인과관계 검증 결과, 선물의 거래량이 일중 현물의 변동성을 강하게 선도하고 있는 반면, 선물의 거래량은 밤중 현물의 변동성에 의하여 강하게 선도되고 있음을 알 수 있다. 이는 하루 중 거래가 진행되고 있는 동안에는 선물의 거래량 충격에 의하여 현물의 변동성이 선도되고 밤중에는 현물 변동성에 의하여 선물의 거래량 충격이 선도됨을 의미하는 것이다. 이들 사이의 충격반응 검증결과 어느 한 변수에 대한 다른 변수의 반응은 모두 양의 관계를 가지고 있다. 이를 종합해 보면 거래가 이루어지고 있는 동안에는 선물의 거래가 현물의 변동성을 증가시키고 있었고, 거래가 이루어지지 않는 밤중 사이의 현물의 변동성은 선물의 거래를 증가시키는 관계에 있음을 알 수 있었다. 그러나 선물의 만기 부근에 현물의 변동성이 높아진다는 증거를 찾기는 어려웠다.

  • PDF

기계학습을 활용한 상품자산 투자모델에 관한 연구 (A Study on Commodity Asset Investment Model Based on Machine Learning Technique)

  • 송진호;최흥식;김선웅
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.127-146
    • /
    • 2017
  • 상품자산(Commodity Asset)은 주식, 채권과 같은 전통자산의 포트폴리오의 안정성을 높이기 위한 대체투자자산으로 자산배분의 형태로 투자되고 있지만 주식이나 채권 자산에 비해 자산배분에 대한 모델이나 투자전략에 대한 연구가 부족한 실정이다. 최근 발전한 기계학습(Machine Learning) 연구는 증권시장의 투자부분에서 적극적으로 활용되고 있는데, 기존 투자모델의 한계점을 개선하는 좋은 성과를 나타내고 있다. 본 연구는 이러한 기계학습의 한 기법인 SVM(Support Vector Machine)을 이용하여 상품자산에 투자하는 모델을 제안하고자 한다. 기계학습을 활용한 상품자산에 관한 기존 연구는 주로 상품가격의 예측을 목적으로 수행되었고 상품을 투자자산으로 자산배분에 관한 연구는 찾기 힘들었다. SVM을 통한 예측대상은 투자 가능한 대표적인 4개의 상품지수(Commodity Index)인 골드만삭스 상품지수, 다우존스 UBS 상품지수, 톰슨로이터 CRB상품지수, 로저스 인터내셔날 상품지수와 대표적인 상품선물(Commodity Futures)로 구성된 포트폴리오 그리고 개별 상품선물이다. 개별상품은 에너지, 농산물, 금속 상품에서 대표적인 상품인 원유와 천연가스, 옥수수와 밀, 금과 은을 이용하였다. 상품자산은 전반적인 경제활동 영역에 영향을 받기 때문에 거시경제지표를 통하여 투자모델을 설정하였다. 주가지수, 무역지표, 고용지표, 경기선행지표 등 19가지의 경제지표를 이용하여 상품지수와 상품선물의 등락을 예측하여 투자성과를 예측하는 연구를 수행한 결과, 투자모델을 활용하여 상품선물을 리밸런싱(Rebalancing)하는 포트폴리오가 가장 우수한 성과를 나타냈다. 또한, 기존의 대표적인 상품지수에 투자하는 것 보다 상품선물로 구성된 포트폴리오에 투자하는 것이 우수한 성과를 얻었으며 상품선물 중에서도 에너지 섹터의 선물을 제외한 포트폴리오의 성과가 더 향상된 성과를 나타남을 증명하였다. 본 연구에서는 포트폴리오 성과 향상을 위해 기존에 널리 알려진 전통적 주식, 채권, 현금 포트폴리오에 상품자산을 배분하고자 할 때 투자대상은 상품지수에 투자하는 것이 아닌 개별 상품선물을 선정하여 자체적 상품선물 포트폴리오를 구성하고 그 방법으로는 기간마다 강세가 예측되는 개별 선물만을 골라서 포트폴리오를 재구성하는 것이 효과적인 투자모델이라는 것을 제안한다.

Prediction of the price for stock index futures using integrated artificial intelligence techniques with categorical preprocessing

  • Kim, Kyoung-jae;Han, Ingoo
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1997년도 추계학술대회발표논문집; 홍익대학교, 서울; 1 Nov. 1997
    • /
    • pp.105-108
    • /
    • 1997
  • Previous studies in stock market predictions using artificial intelligence techniques such as artificial neural networks and case-based reasoning, have focused mainly on spot market prediction. Korea launched trading in index futures market (KOSPI 200) on May 3, 1996, then more people became attracted to this market. Thus, this research intends to predict the daily up/down fluctuant direction of the price for KOSPI 200 index futures to meet this recent surge of interest. The forecasting methodologies employed in this research are the integration of genetic algorithm and artificial neural network (GAANN) and the integration of genetic algorithm and case-based reasoning (GACBR). Genetic algorithm was mainly used to select relevant input variables. This study adopts the categorical data preprocessing based on expert's knowledge as well as traditional data preprocessing. The experimental results of each forecasting method with each data preprocessing method are compared and statistically tested. Artificial neural network and case-based reasoning methods with best performance are integrated. Out-of-the Model Integration and In-Model Integration are presented as the integration methodology. The research outcomes are as follows; First, genetic algorithms are useful and effective method to select input variables for Al techniques. Second, the results of the experiment with categorical data preprocessing significantly outperform that with traditional data preprocessing in forecasting up/down fluctuant direction of index futures price. Third, the integration of genetic algorithm and case-based reasoning (GACBR) outperforms the integration of genetic algorithm and artificial neural network (GAANN). Forth, the integration of genetic algorithm, case-based reasoning and artificial neural network (GAANN-GACBR, GACBRNN and GANNCBR) provide worse results than GACBR.

  • PDF

주가지수선물가격과 옵션가격의 동적관련성에 관한 연구 - KOSPI 200 주가지수현물시장을 중심으로 - (The Price Dynamics in Futures and Option Markets - based on KOSPI200 stock index market -)

  • 서상구
    • 경영과정보연구
    • /
    • 제36권3호
    • /
    • pp.37-49
    • /
    • 2017
  • 자본시장에서의 동적관련성(dynamic relationship)이란 동일한 자산이 상호 밀접하게 연관되어 있는 서로 다른 시장에서 거래되는 경우 새로운 정보가 가격에 반영되는데 있어 시장들 간에 시간적 차이가 존재함을 의미한다. 시장들 간의 정보전이효과에 대한 특성을 분석하는 것은 시장효율성과 관련한 시장의 미시구조적인 특성을 밝히는데 중요한 의미를 가진다. 이를 위해 본 연구에서는 KOSPI200 주가지수현물시장과 파생상품시장들 간의 가격적 동적관련성에 관해 분석을 하였다. 구체적으로는 현물시장과 선물시장 간의 선-후행관계, 그리고 현물시장과 옵션시장 간의 선-후행관계를 분석하였다. 분석기간은 2012년 06월부터 2014년 12월까지이며, 이 기간 동안 5분 단위로 측정된 거래자료를 이용하여 산출된 수익률을 분석에 이용하였다. 실증적 분석을 위해 각 수익률 시계열에 대해 자기상관관계분석, 두 시계열 간의 교차상관관계분석 그리고 시계열 간의 회귀분석을 통해 시장들 간의 동적관련성을 단계적으로 분석하였다. 주요한 분석결과는 다음과 같다. 첫째, 현물지수의 경우 약 10분 전부터 자기상관관계가 존재하지만 선물가격과 옵션가격의 경우에는 약한 자기상관관계가 존재하는 것으로 나타났다. 둘째, 교차상관관계분석에서 선물 및 옵션가격이 약 15분 정도 현물수익률에 선행하는 경향이 강하게 나타나고 있으며, 현물지수가 선물가격과 옵션가격에 선행하는 경향은 약한 것으로 나타났다. 셋째, 다중회귀분석을 통한 결과에서 선물가격은 10-15분 전부터 현물가격에 선행하여 정(+)의 방향으로 영향을 미치며, 현물가격은 선물가격에 약 5분 정도 선행하는 것으로 나타났다. 옵션가격의 경우 약 5-10분 정도에서 현물가격에 선행하고 있으며, 현물가격이 옵션가격에 선행하는 정도는 아주 약한 것으로 나타났다. 이러한 분석결과는 선물 및 옵션시장이 개설된 이후 약 11개월 동안의 자료를 이용하여 분석한 김찬웅과 문규현(2001)의 연구결과와 비교하면 선물가격 및 옵션가격이 현물지수에 선행하는 시간이 약 10분 정도 단축되었으며, 현물지수가 선물가격 및 옵션가격에 선행하는 시간은 약 5분 정도 단축된 것으로 나타났다. 이는 파생상품시장의 개설된 초기에 비해 약 20년이 지난 시점에서 KOSPI200 주가지수현물시장과 파생상품시장 간의 시장효율성이 다소 향상된 것을 의미한다고 볼 수 있다.

  • PDF

International Transmission of Information Across National Stock Markets: Evidence from the Stock Index Futures Markets

  • 김민호
    • 재무관리연구
    • /
    • 제15권1호
    • /
    • pp.73-94
    • /
    • 1998
  • This paper contributes to the ongoing controversy over price and volatility spillovers across countries by providing new evidence with the futures data of the S&P 500 and Nikkei 225 index futures contacts from January 3, 1990 to April 16, 1996. Based on the two-stage symmetric and asymmetric GARCH models we document that both the U.S. and the Japanese daytime returns significantly influence the subsequent overnight returns of the other market. We find no signs of volatility spillovers between two international markets with the symmetric model. However, with the asymmetric models, we find that the magnitude of foreign negative shocks are different from the positive ones. The findings generally suggest that the two markets are more sensitive to the bad news originating in the other market. This nature of transmission between two markets would have important implications to the arbitragers who are trying to exploit the short-term dynamics of price and volatility movements across two security markets.

  • PDF

방향성매매를 위한 지능형 매매시스템의 투자성과분석 (Analysis of Trading Performance on Intelligent Trading System for Directional Trading)

  • 최흥식;김선웅;박성철
    • 지능정보연구
    • /
    • 제17권3호
    • /
    • pp.187-201
    • /
    • 2011
  • 방향성(Direction)과 변동성(Volatility)에 대한 분석은 증권투자를 위한 시장분석의 기초가 된다. 변동성분석이 옵션 투자에서 중요하다면 주식이나 주가지수선물투자는 방향성분석에 의하여 투자성과가 결정된다. 기존의 금융분석에서 기계학습을 이용한 방향성에 대한 연구는 주가나 투자위험의 예측을 중심으로 이루어졌으며, 최근에 와서야 실전투자를 위한 매매시스템(trading system) 개발에 대한 연구가 이루어지고 있다. 인공지능형 주가예측모형에서는 ANN(artificial neural networks), fuzzy system, SVM(Support Vector Machine) 등의 기법이 주로 활용되고 있다. 본 연구에서는 방향성매매를 위한 지능형 기계학습방법 중에서도 패턴인식에서 좋은 성과를 보이고 있는 은닉마코프 모형(Hidden Markov Model)을 이용한다. 실무적으로는 방향성 예측을 위해 주로 주가의 추세분석(Trend Analysis)을 활용한다. 다양한 기술적 지표를 이용한 추세분석에 기반한 시스템트레이딩(System Trading) 기법은 실전투자에서 점차 확대추세에 있다. 본 연구에서는 시스템트레이딩 기법 중 실무에서 많이 이용되는 이동평균교차전략(moving average cross)에 연속 은닉마코프모형을 적용한 지능형 매매시스템을 제안하고, 실제 주가자료를 이용한 시뮬레이션 결과를 제시한다. 세계적 선물시장으로 성장한 KOSPI200 선물시장에서 제안된 매매시스템의 장기간의 투자성과를 분석하기 위하여 지난 21년 동안의 KOSPI200 주가지수자료를 실증 분석하였다. 분석결과는 KOSPI200 주가지수선물의 방향성매매에서 제안된 CHMM기반 지능형 매매시스템이 실전에서 일반적으로 활용되는 시스템트레이딩 기법의 투자성과를 개선할 수 있음을 보여주었다.

KOSPI200 선물 시장의 증거금 수준에 대한 연구 (Analysis of the margin level in the KOSPI200 futures market)

  • 김준;최인찬
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2004년도 춘계공동학술대회 논문집
    • /
    • pp.734-737
    • /
    • 2004
  • When the margin level is set relatively low, margin violation probability increases and the default probability of the futures market rises. On the other hand, if the margin level is set high, the margin violation probability decreases, but the futures market becomes less attractive to hedgers as the investor's opportunity cost increases. In this paper, we investigate whether the movement of KOSPI200(Korea Composite Stock Price Index 200) futures daily prices can be modeled with the extreme value theory. Base on this investigation, we examine the validity of the margin level set by the extreme value theory. Computational results are presented to compare the extreme value distribution and the empirical distribution of margin violation in KOSPI200. Some observations and implications drawn from the computational experiment are also discussed.

  • PDF

주가지수 선물의 가격 비율에 기반한 차익거래 투자전략을 위한 페어트레이딩 규칙 개발 (Developing Pairs Trading Rules for Arbitrage Investment Strategy based on the Price Ratios of Stock Index Futures)

  • 김영민;김정수;이석준
    • 산업경영시스템학회지
    • /
    • 제37권4호
    • /
    • pp.202-211
    • /
    • 2014
  • Pairs trading is a type of arbitrage investment strategy that buys an underpriced security and simultaneously sells an overpriced security. Since the 1980s, investors have recognized pairs trading as a promising arbitrage strategy that pursues absolute returns rather than relative profits. Thus, individual and institutional traders, as well as hedge fund traders in the financial markets, have an interest in developing a pairs trading strategy. This study proposes pairs trading rules (PTRs) created from a price ratio between securities (i.e., stock index futures) using rough set analysis. The price ratio involves calculating the closing price of one security and dividing it by the closing price of another security and generating Buy or Sell signals according to whether the ratio is increasing or decreasing. In this empirical study, we generate PTRs through rough set analysis applied to various technical indicators derived from the price ratio between KOSPI 200 and S&P 500 index futures. The proposed trading rules for pairs trading indicate high profits in the futures market.