• Title/Summary/Keyword: Stochastic properties

Search Result 323, Processing Time 0.02 seconds

Development of Statistical Downscaling Model Using Nonstationary Markov Chain (비정상성 Markov Chain Model을 이용한 통계학적 Downscaling 기법 개발)

  • Kwon, Hyun-Han;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.3
    • /
    • pp.213-225
    • /
    • 2009
  • A stationary Markov chain model is a stochastic process with the Markov property. Having the Markov property means that, given the present state, future states are independent of the past states. The Markov chain model has been widely used for water resources design as a main tool. A main assumption of the stationary Markov model is that statistical properties remain the same for all times. Hence, the stationary Markov chain model basically can not consider the changes of mean or variance. In this regard, a primary objective of this study is to develop a model which is able to make use of exogenous variables. The regression based link functions are employed to dynamically update model parameters given the exogenous variables, and the model parameters are estimated by canonical correlation analysis. The proposed model is applied to daily rainfall series at Seoul station having 46 years data from 1961 to 2006. The model shows a capability to reproduce daily and seasonal characteristics simultaneously. Therefore, the proposed model can be used as a short or mid-term prediction tool if elaborate GCM forecasts are used as a predictor. Also, the nonstationary Markov chain model can be applied to climate change studies if GCM based climate change scenarios are provided as inputs.

Application of an Automated Time Domain Reflectometry to Solute Transport Study at Field Scale: Transport Concept (시간영역 광전자파 분석기 (Automatic TDR System)를 이용한 오염물질의 거동에 관한 연구: 오염물질 운송개념)

  • Kim, Dong-Ju
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.713-724
    • /
    • 1996
  • The time-series resident solute concentrations, monitored at two field plots using the automated 144-channel TDR system by Kim (this issue), are used to investigate the dominant transport mechanism at field scale. Two models, based on contradictory assumptions for describing the solute transport in the vadose zone, are fitted to the measured mean breakthrough curves (BTCs): the deterministic one-dimensional convection-dispersion model (CDE) and the stochastic-convective lognormal transfer function model (CLT). In addition, moment analysis has been performed using the probability density functions (pdfs) of the travel time of resident concentration. Results of moment analysis have shown that the first and second time moments of resident pdf are larger than those of flux pdf. Based on the time moments, expressed in function of model parameters, variance and dispersion of resident solute travel times are derived. The relationship between variance or dispersion of solute travel time and depth has been found to be identical for both the time-series flux and resident concentrations. Based on these relationships, the two models have been tested. However, due to the significant variations of transport properties across depth, the test has led to unreliable results. Consequently, the model performance has been evaluated based on predictability of the time-series resident BTCs at other depths after calibration at the first depth. The evaluation of model predictability has resulted in a clear conclusion that for both experimental sites the CLT model gives more accurate prediction than the CDE model. This suggests that solute transport at natural field soils is more likely governed by a stream tube model concept with correlated flow than a complete mixing model. Poor prediction of CDE model is attributed to the underestimation of solute spreading and thus resulting in an overprediction of peak concentration.

  • PDF

Characterization of Ecological Networks on Wetland Complexes by Dispersal Models (분산 모형에 따른 습지경관의 생태 네트워크 특성 분석)

  • Kim, Bin;Park, Jeryang
    • Journal of Wetlands Research
    • /
    • v.21 no.1
    • /
    • pp.16-26
    • /
    • 2019
  • Wetlands that provide diverse ecosystem services, such as habitat provision and hydrological control of flora and fauna, constitute ecosystems through interaction between wetlands existing in a wetlandscape. Therefore, to evaluate the wetland functions such as resilience, it is necessary to analyze the ecological connectivity that is formed between wetlands which also show hydrologically dynamic behaviors. In this study, by defining wetlands as ecological nodes, we generated ecological networks through the connection of wetlands according to the dispersal model of wetland species. The characteristics of these networks were then analyzed using various network metrics. In the case of the dispersal based on a threshold distance, while a high local clustering is observed compared to the exponential dispersal kernel and heavy-tailed dispersal model, it showed a low efficiency in the movement between wetlands. On the other hand, in the case of the stochastic dispersion model, a low local clustering with high efficiency in the movement was observed. Our results confirmed that the ecological network characteristics are completely different depending on which dispersal model is chosen, and one should be careful on selecting the appropriate model for identifying network properties which highly affect the interpretation of network structure and function.