• Title/Summary/Keyword: Stochastic Scheduling

Search Result 86, Processing Time 0.027 seconds

STOCHASTIC SCHEDULING CONSIDERING INTERDEPENDENT ACTIVITY DURATIONS

  • I-Tung Yang
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.791-795
    • /
    • 2005
  • A simulation model is proposed to evaluate the effect of correlations between activity durations on the overall project duration. The proposed model incorporates NORTA, a recent developed statistical method, into the simulation process to allow arbitrarily specified marginal distributions for activity durations and any desired correlation structure. The generality is of practical value when systematic data is not available and planners have to rely on arbitrary experts' estimation, which may involve a mixed situation when some activity durations are continuously distributed whereas others are discrete outcomes. The proposed model is validated by showing that the correlation coefficients of the simulation results are close to the originally specified ones. The simulation results are compared to two conventional approaches: PERT and simulation without correlation. The comparisons illustrate that the proposed model can provide important management information, which would otherwise be distorted due to the neglect of the correlations between activity durations.

  • PDF

Performance Evaluation of Output Queueing ATM Switch with Finite Buffer Using Stochastic Activity Networks (SAN을 이용한 제한된 버퍼 크기를 갖는 출력큐잉 ATM 스위치 성능평가)

  • Jang, Kyung-Soo;Shin, Ho-Jin;Shin, Dong-Ryeol
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.8
    • /
    • pp.2484-2496
    • /
    • 2000
  • High speed switches have been developing to interconnect a large number of nodes. It is important to analyze the switch performance under various conditions to satisfy the requirements. Queueing analysis, in general, has the intrinsic problem of large state space dimension and complex computation. In fact, The petri net is a graphical and mathematical model. It is suitable for various applications, in particular, manufacturing systems. It can deal with parallelism, concurrence, deadlock avoidance, and asynchronism. Currently it has been applied to the performance of computer networks and protocol verifications. This paper presents a framework for modeling and analyzing ATM switch using stochastic activity networks (SANs). In this paper, we provide the ATM switch model using SANs to extend easily and an approximate analysis method to apply A TM switch models, which significantly reduce the complexity of the model solution. Cell arrival process in output-buffered Queueing A TM switch with finite buffer is modeled as Markov Modulated Poisson Process (MMPP), which is able to accurately represent real traffic and capture the characteristics of bursty traffic. We analyze the performance of the switch in terms of cell-loss ratio (CLR), mean Queue length and mean delay time. We show that the SAN model is very useful in A TM switch model in that the gates have the capability of implementing of scheduling algorithm.

  • PDF

An Exact Stochastic Analysis Method for Priority-driven Real-time Systems (우선순위 스케줄링을 사용하는 실시간 시스템을 위한 정확한 확률적 분석 방법)

  • 김강희
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.3_4
    • /
    • pp.170-186
    • /
    • 2004
  • Recently, for real-time applications such as multimedia and signal processing, it becomes increasingly important to provide a probabilistic guarantee that each task in the application meets its deadline with a given probability. To provide the probabilistic guarantee, an analysis method is needed that can accurately predict the deadline miss probability for each task in a given system. This paper proposes a stochastic analysis method for real-time systems that use priority-driven scheduling, such as Rate Monotonic and Earliest Deadline First, in order to accurately compute the deadline miss probability of each task in the system. The proposed method accurately computes the response time distributions for tasks with arbitrary execution time distributions, and thus makes it possible to determine the deadline miss probability of individual tasks. In the paper. through experiments, we show that the proposed method is highly accurate and outperforms exisiting methods proposed in the literature.

Web-based Three-step Project Management Model and Its Software Development

  • Hwang Heung-Suk;Cho Gyu-Sung
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.373-378
    • /
    • 2006
  • Recently the technical advances and complexities have generated much of the difficulties in managing the project resources, for both scheduling and costing to accomplish the project in the most efficient manner. The project manager is frequently required to render judgments concerning the schedule and resource adjustments. This research develops an analytical model for a schedule-cost and risk analysis based on visual PERT/CPM. We used a three-step approach: 1) in the first step, a deterministic PERT/CPM model for the critical path and estimating the project time schedule and related resource planning and we developed a heuristic model for crash and stretch out analysis based upon a time-cost trade-off associated with the crash and stretch out of the project. 2) In second step, we developed web-based risk evaluation model for project analysis. Major technologies used for this step are AHP (analytic hierarchy process, fuzzy-AHP, multi-attribute analysis, stochastic network simulation, and web based decision support system. Also we have developed computer programs and have shown the results of sample runs for an R&D project risk analysis. 3) We developed an optimization model for project resource allocation. We used AHP weighted values and optimization methods. Computer implementation for this model is provided based on GUI-Type objective-oriented programming for the users and provided displays of all the inputs and outputs in the form of GUI-Type. The results of this research will provide the project managers with efficient management tools.

  • PDF

A NESTING APPROACH IN DISCRETE EVENT SIMULATION FOR INTEGRATING CONSTRUCTION OPERATION AND SCHEDULE MODELS

  • Chang-Yong Yi;Chan-Sik Park;Doo-Jin Lee;Dong-Eun Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.400-408
    • /
    • 2009
  • Simulation applications for analyzing the productivity of construction operations at operation level and project schedules at project level are crucial methods in project management. The application at two different levels should be very tightly linked to each other in practice. However, appropriate integration at the levels is not achieved in that existing systems do not support to integrate operation models into a schedule model. This paper presents a new approach named to Discrete Event Simulation-Nesting modeling approach, which supports not only productivity analysis at operation level but also schedule management at a project level. The system developed by the authors allows creating operation models at the operation level, maintaining them in operation model library, executing sensitivity analysis to find the behaviors of the operation models when different combination of resources are used as existing DES systems do. On top of the conventional functions, the new system facilitates to find the optimum solution of resource combinations which satisfy the user's interest by computing the hourly productivity and the hourly cost of the operation. By drag-and-dropping an operation model kept in the operation model library, the operation models are integrated into an activity of the schedule model. When a complete schedule model is established by nesting operation models into the schedule model, stochastic simulation based scheduling is executed. A case study is presented to demonstrate the new simulation system and verify the validity of the system.

  • PDF

Optimal Coordination of Charging and Frequency Regulation for an Electric Vehicle Aggregator Using Least Square Monte-Carlo (LSMC) with Modeling of Electricity Price Uncertainty

  • Lee, Jong-Uk;Wi, Young-Min;Kim, Youngwook;Joo, Sung-Kwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1269-1275
    • /
    • 2013
  • Recently, many studies have suggested that an electric vehicle (EV) is one of the means for increasing the reliability of power systems in new energy environments. EVs can make a contribution to improving reliability by providing frequency regulation in power systems in which the Vehicle-to-Grid (V2G) technology has been implemented and, if economically viable, can be helpful in increasing power system reliability. This paper presents a stochastic method for optimal coordination of charging and frequency regulation decisions for an EV aggregator using the Least Square Monte-Carlo (LSMC) with modeling of electricity price uncertainty. The LSMC can be used to assess the value of options based on electricity price uncertainty in order to simultaneously optimize the scheduling of EV charging and regulation service for the EV aggregator. The results of a numerical example show that the proposed method can significantly improve the expected profits of an EV aggregator.

Development of a Model for the Optimal Test Scheduling Considering Multiple Products (다제품 생산을 위한 최적 테스트 스케줄링 모델 개발)

  • Son, Hong-Rok;Ryu, Jun-Hyung;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.695-699
    • /
    • 2009
  • As a rule, when develop new product in company, multiple products that have similar function are developed simultaneously. These products are subjected to a group of tests covering quality, safety and durability. If the schedule of tests is changed, the expected net presented value(NPV) of new products is changed. The tests should be scheduled with the goal of maximizing the expected NPV of the new products. A model incorporated resource constraints with the sequencing of testing tasks of multiple products is proposed in this paper. Examples show that the proposed model can handle stochastic task duration data represented by scenarios with probabilities.

Stochastic Analysis of the Uncertain Hourly Load Demand Applying to Unit Commitment Problem (발전기 기동정지 계획에 적용되는 불확실한 부하곡선에 대한 통계적 분석)

  • Jung, Choon-Sik;Park, Jeong-Do;Kook, Hyun-Jong;Moon, Young-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.337-340
    • /
    • 2000
  • In this paper, the effects of the uncertain hourly load demand are stochastically analyzed especially by the consideration of the average over generation of the Unit Commitment(UC) results. In order to minimize the effects of the actual load profile change, a new UC algorithm is proposed. The proposed algorithm calculates the UC results with the lower load level than the one generated by the conventional load forecast. In case of the worse load forecast, the deviation of the conventional UC solution can be overcome with the lower load level and the more hourly reserve requirements. The proposed method is tested with sample systems, which shows that the proposed method can be used as the basic guideline for selecting the potimal load forecast applying to UC problem.

  • PDF

Adaptive Time Delay Compensation Process in Networked Control System

  • Kim, Yong-Gil;Moon, Kyung-Il
    • International journal of advanced smart convergence
    • /
    • v.5 no.1
    • /
    • pp.34-46
    • /
    • 2016
  • Networked Control System (NCS) has evolved in the past decade through the advances in communication technology. The problems involved in NCS are broadly classified into two categories namely network issues due to network and control performance due to system network. The network problems are related to bandwidth allocation, scheduling and network security, and the control problems deal with stability analysis and delay compensation. Various delays with variable length occur due to sharing a common network medium. Though most delays are very less and mostly neglected, the network induced delay is significant. It occurs when sensors, actuators, and controllers exchange data packet across the communication network. Networked induced delay arises from sensor to controller and controller to actuator. This paper presents an adaptive delay compensation process for efficient control. Though Smith predictor has been commonly used as dead time compensators, it is not adaptive to match with the stochastic behavior of network characteristics. Time delay adaptive compensation gives an effective control to solve dead time, and creates a virtual environment using the plant model and computed delay which is used to compensate the effect of delay. This approach is simulated using TrueTime simulator that is a Matlab Simulink based simulator facilitates co-simulation of controller task execution in real-time kernels, network transmissions and continuous plant dynamics for NCS. The simulation result is analyzed, and it is confirmed that this control provides good performance.

Design of a GIS-Based Distribution System with Service Consideration (서비스수준을 고려한 GIS기반의 차량 운송시스템)

  • 황흥석;조규성
    • Korean Management Science Review
    • /
    • v.18 no.2
    • /
    • pp.125-134
    • /
    • 2001
  • This paper is concerned with the development of a GIS-based distribution system with service consideration. The proposed model could be used for a wide range of logistics applications in planning, engineering and operational purpose for logistics system. This research addresses the formulation of those complex prob1ems of two-echelon logistics system to plan the incorporating supply center locations and distribution problems based on GIS. We propose an integrated logistics model for determining the optimal patterns of supply centers and inventory allocations (customers) with a three-step sequential approach. 1) First step, Developing GIS-distance model and stochastic set-covering program to determine Optimel pattern of supply center location. 2) Second step, Optimal sector-clustering to support customers. 3) Third step, Optimal vehicle rouse scheduling based on GIS, GIS-VRP In this research we developed GUI-tree program, the GIS-VRP provide the vehicle to users and freight information in real time. We applied a set of sample examples to this model and demonstrated samp1e results. It has been found that the proposed model is potentially efficient and useful in solving multi-depot problem through examples. However the proposed model can provide logistics decision makers to get the best supply schedule.

  • PDF