• Title/Summary/Keyword: Stochastic Nonlinear Dynamic System

Search Result 40, Processing Time 0.024 seconds

Dynamic Analysis of Guyed Tower Subjected to Random Waves (랜덤파랑하중에 대한 Guyed Tower의 동적 거동해석)

  • 유정선;윤정봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.57-64
    • /
    • 1987
  • Methods of nonlinear stochastic analysis of guyed towers are studied in this paper. Two different kinds of nonlinearities are considered. They are the nonlinear restoring force from the guying system and the nonlinear hydrodynamic force. Analyses are carried out mainly in the frequency domain using linearization techniques. Two methods for the linearization of the nonlinear stiffness are presented, in which the effects of the steady offset and the oscillating component of the structural motion can be adequately analyzed. those two methods are the equivalent linearization method and the average stiffness method. The linearization of the nonlinear drag force is also carried out considering the effect of steady current as well as oscillatory wave motions. Example analyses are performed for guyed tower in 300m water. Transfer functions and the expected maximum values of the deck displacement and the bending moment near the middle of the tower are calculated. Numerical results show that both of the frequency domain methods presented in this paper predict the responses of the sturcture very reasonably compared with those by the time integration method utilzing the random simulations wave particla motions.

  • PDF

Dynamic Behaviors of an Impact System under Randomly Perturbed Harmonic Excitation by the Path-Integral Solution Procedure (Path-Integral Solution을 이용한 랜덤동요된 조화가진력을 받는 임팩트시스템의 거동분석)

  • 마호성
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.1
    • /
    • pp.83-91
    • /
    • 2004
  • Nonlinear system responses of an impact system under randomly perturbed harmonic excitations are predicted in the probability domain by adopting the semi-analytical procedure previously developed. The semi-analytical procedure is obtained by solving the Fokker-Planck equation corresponding to the stochastic differential equation of the given impact system by utilizing the path-integral solution. The evolutionary joint probability density functions are generated by using the method, and the characteristics of nonlinear dynamic response behaviors of the system are examined. Noise effects on the responses are also examined. It Is found that the semi-analytical method can provides the accurate information of the responses via the joint probability functions for the impact system. It is found that the noises weaken and eventually terminate the chaos in the responses, but it is also found that the chaotic signatures reside in the presence of the external noise with relatively high intensity. The joint probability density function shows that the ensemble of the system responses are weakly stationary.

Learning of Differential Neural Networks Based on Kalman-Bucy Filter Theory (칼만-버쉬 필터 이론 기반 미분 신경회로망 학습)

  • Cho, Hyun-Cheol;Kim, Gwan-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.777-782
    • /
    • 2011
  • Neural network technique is widely employed in the fields of signal processing, control systems, pattern recognition, etc. Learning of neural networks is an important procedure to accomplish dynamic system modeling. This paper presents a novel learning approach for differential neural network models based on the Kalman-Bucy filter theory. We construct an augmented state vector including original neural state and parameter vectors and derive a state estimation rule avoiding gradient function terms which involve to the conventional neural learning methods such as a back-propagation approach. We carry out numerical simulation to evaluate the proposed learning approach in nonlinear system modeling. By comparing to the well-known back-propagation approach and Kalman-Bucy filtering, its superiority is additionally proved under stochastic system environments.

Response scaling factors for nonlinear response analysis of MDOF system (다층건물의 비선형 반응해석을 위한 반응수정계수)

  • 한상환;이리형
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.103-111
    • /
    • 1995
  • Evaluating nonlinear response of a MDOF system under dynamic stochastic loads such as seismic excitation usually requires excessive computational efforts. To alleviate this computational difficulty, an approximation is developed in which the MDOF inelastic system is replaced by a simple nonlinear equivalent system(ENS).Me ENS retains the most important properties of the original system such as dynamic characteristics of the first two modes and the global yielding behavior of the MDOF system. The system response is described by the maximum global(building) and local(interstory) drifts. The equivalency is achieved by two response scaling factors, a global response scaling factor R/sub G/, and a local response scaling factor R/sub L/, applied to the responses of the ENS to match those of the original MDOF system. These response scaling factors are obtained as functions of ductility and mass participation factors of the first two modes of structures by extensive regression analyses based on results of responses of the MDOF system and the ENS to actual ground accelerations recorded in past earthquakes. To develop the ENS with two response scaling factors, Special Moment Resisting Steel Frames are considered. Then, these response scaling factors are applied to the response of ENS to obtain the nonlinear response of MDOF system.

  • PDF

Study on Volterra System for Variation of Metacentric Height in Waves and its Application to Analysis of Parametric Roll (볼테라 시스템을 이용한 파랑 중 파라메트릭 횡동요에 대한 연구)

  • Lee, Jae-Hoon;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.3
    • /
    • pp.227-241
    • /
    • 2017
  • In this study, a Volterra system for the variations of metacentric height (GM) in waves is employed to simulate the parametric roll phenomena of ships in head sea condition. Using the present Volterra system, the transfer function of each harmonic component in the GM variation is computed for different ship models, including mathematical models and a real containership, and the results are validated through the comparison with the values obtained using the direct calculations based on a weakly nonlinear time-domain method. Then, a semi-analytic approach employing a 1-degree of freedom equation for roll motion is developed to simulate the parametric roll motions in irregular waves. In the derived approach, the nonlinear and time-varying restoring forces in the waves are approximated using the Volterra system. Through simulations of the parametric roll for different sea states, the effects of the 1st and 2nd-order harmonic components of the variations in the occurrence and amplitude of the parametric roll motions are investigated. Because of the strong nonlinearities in the phenomena, a stochastic analysis is conducted to examine the statistical properties of the roll motions in consideration of the sensitivities and uncertainties in the computations.

Chaotic Analysis of Water Balance Equation (물수지 방정식의 카오스적 분석)

  • 이재수
    • Water for future
    • /
    • v.27 no.3
    • /
    • pp.45-54
    • /
    • 1994
  • Basic theory of fractal dimension is introduced and performed for the generated time series using the water balance model. The water balance equation over a large area is analyzed at seasonal time scales. In the generation and modification of mesoscale circulation local recycling of precipitation and dynamic effects of soil moisture are explicitly included. Time delay is incorporated in the analysis. Depending on the parameter values, the system showed different senarios in the evolution such as fixed point, limit cycle, and chaotic types of behavior. The stochastic behavior of the generated time series is due to deterministic chaos which arises from a nonlinear dynamic system with a limited number of equations whose trajectories are highly sensitive to initial conditions. The presence of noise arose from the characterization of the incoming precipitation, destroys the organized structure of the attractor. The existence of the attractor although noise is present is very important to the short-term prediction of the evolution. The implications of this nonlinear dynamics are important for the interpretation and modeling of hydrologic records and phenomena.

  • PDF

Seismic reliability assessment of base-isolated structures using artificial neural network: operation failure of sensitive equipment

  • Moeindarbari, Hesamaldin;Taghikhany, Touraj
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.425-436
    • /
    • 2018
  • The design of seismically isolated structures considering the stochastic nature of excitations, base isolators' design parameters, and superstructure properties requires robust reliability analysis methods to calculate the failure probability of the entire system. Here, by applying artificial neural networks, we proposed a robust technique to accelerate the estimation of failure probability of equipped isolated structures. A three-story isolated building with susceptible facilities is considered as the analytical model to evaluate our technique. First, we employed a sensitivity analysis method to identify the critical sources of uncertainty. Next, we calculated the probability of failure for a particular set of random variables, performing Monte Carlo simulations based on the dynamic nonlinear time-history analysis. Finally, using a set of designed neural networks as a surrogate model for the structural analysis, we assessed once again the probability of the failure. Comparing the obtained results demonstrates that the surrogate model can attain precise estimations of the probability of failure. Moreover, our proposed approach significantly increases the computational efficiency corresponding to the dynamic time-history analysis of the structure.

Passive control of seismically excited structures by the liquid column vibration absorber

  • Konar, Tanmoy;Ghosh, Aparna Dey
    • Structural Engineering and Mechanics
    • /
    • v.36 no.5
    • /
    • pp.561-573
    • /
    • 2010
  • The potential of the liquid column vibration absorber (LCVA) as a seismic vibration control device for structures has been explored in this paper. In this work, the structure has been modeled as a linear, viscously damped single-degree-of-freedom (SDOF) system. The governing differential equations of motion for the damper liquid and for the coupled structure-LCVA system have been derived from dynamic equilibrium. The nonlinear orifice damping in the LCVA has been linearized by a stochastic equivalent linearization technique. A transfer function formulation for the structure-LCVA system has been presented. The design parameters of the LCVA have been identified and by applying the transfer function formulation the optimum combination of these parameters has been determined to obtain the most efficient control performance of the LCVA in terms of the reduction in the root-mean-square (r.m.s.) displacement response of the structure. The study has been carried out for an example structure subjected to base input characterized by a white noise power spectral density function (PSDF). The sensitivity of the performance of the LCVA to the coefficient of head loss and to the tuning ratio have also been examined and compared with that of the liquid column damper (LCD). Finally, a simulation study has been carried out with a recorded accelerogram, to demonstrate the effectiveness of the LCVA.

Instrumentation and system identification of a typical school building in Istanbul

  • Bakir, Pelin Gundes
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.179-197
    • /
    • 2012
  • This study presents the findings of the structural health monitoring and the real time system identification of one of the first large scale building instrumentations in Turkey for earthquake safety. Within this context, a thorough review of steps in the instrumentation, monitoring is presented and seismic performance evaluation of structures using both nonlinear pushover and nonlinear dynamic time history analysis is carried out. The sensor locations are determined using the optimal sensor placement techniques used in NASA for on orbit modal identification of large space structures. System identification is carried out via the stochastic subspace technique. The results of the study show that under ambient vibrations, stocky buildings can be substantially stiffer than what is predicted by the finite element models due to the presence of a large number of partitioning walls. However, in a severe earthquake, it will not be safe to rely on this resistance due to the fact that once the partitioning walls crack, the bare frame contributes to the lateral stiffness of the building alone. Consequently, the periods obtained from system identification will be closer to those obtained from the FE analysis. A technique to control the validity of the proportional damping assumption is employed that checks the presence of phase difference in displacements of different stories obtained from band pass filtered records and it is confirmed that the "proportional damping assumption" is valid for this structure. Two different techniques are implemented for identifying the influence of the soil structure interaction. The first technique uses the transfer function between the roof and the basement in both directions. The second technique uses a pre-whitening filter on the data obtained from both the basement and the roof. Subsequently the impulse response function is computed from the scaled cross correlation between the input and the output. The overall results showed that the structure will satisfy the life safety performance level in a future earthquake but some soil structure interaction effects should be expected in the North South direction.

Ashbery's Aesthetics of Difficulty: Information Theory and Hypertext

  • Ryoo, Gi Taek
    • Journal of English Language & Literature
    • /
    • v.58 no.6
    • /
    • pp.1001-1021
    • /
    • 2012
  • This paper is concerned with John Ashbery's poetics of difficulty, questioning in particular the nature of communication in his difficult poems. Ashbery has an idea of poetry as 'information' to be transmitted to the reader. Meaning, however, is to be created by a series of selections among equally probable choices. Ashbery's poetry has been characterized by resistance to the interpretive system of meaning. But the resistance itself, as I will argue, can be an effective medium of communication as the communicated message is not simply transmitted but 'selected' and thus created by the reader. In Ashbery's poetry, disruptive 'noise' elements can be processed as constructive information. What is normally considered a hindrance or noise can be reversed and added to the information. In Ashbery's poems, random ambiguities or noises can be effectively integrated into the final structure of meaning. Such a stochastic sense of information transfer has been embodied in Ashbery's idea of creating a network of verbal elements in his poetry, analogous to the interconnecting web of hypertext, the most dynamic medium 'information technology' has brought to us. John Ashbery, whose poems are simultaneously incomprehensible and intelligent, employs ambiguities or noise in his poetry, with an attempt to reach through linear language to express nonlinear realities. It is therefore my intention to examine Ashbery's poetics of difficulty, from a perspective of communication transmission, using the theories of information technology and the principles of hypertext theory. Ashbery's poetry raises precisely the problem confronted in the era of communication and information technology. The paper will also show how his aesthetics of difficulty reflects the culture of our uncertain times with overflowing information. With his difficult enigmatic poems, Ashbery was able to move ahead of the technological advances of his time to propose a new way of perceiving the world and life.