• Title/Summary/Keyword: Stochastic Frontier Production Model(SFM)

Search Result 3, Processing Time 0.016 seconds

An Analysis on the Efficiency of Container Terminal using Stochastic Frontier Model (SFM을 이용한 컨테이너터미널의 효율성 분석)

  • Kim Un-Soo;Kwak Kyu-Seok
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.105-111
    • /
    • 2005
  • Recently, global terminal operotors are struggling to attract more cargoes into their ports through enlarging facilities and trying to be more efficient operotion Many researches on container terminal efficiency have been conducted, but most of the traditional studies are focused on the partial efficiency of the container terminal using quantitative questionnaires and basic statistical data In this paper, the Stochastic Frontier Model of the interaction among the variables was employed to execute numerical analysis on the efficiency of terminal. The objective of this paper is to measure the level of efficiency in the container terminals every year and to assess the influence in container terminal's efficiency on domestic and foreign terminals by changing the terminal scales and the level of input factors.

International Comparative Analysis of Technical efficiency in Korean Manufacturing Industry (한국 제조업의 기술적 효율성 국제 비교 분석)

  • Lee, Dong-Joo
    • Korea Trade Review
    • /
    • v.42 no.5
    • /
    • pp.137-159
    • /
    • 2017
  • This study divides manufacturing in 18 countries including Korea, China, Japan and OECD countries into 11 areas and estimates and compares the technological efficiency of each industry. The traditional view of productivity is to increase production capacity through technological innovation or process innovation, but it is also influenced by the technological efficiency of production process. A Stochastic Frontier Production Model (SFM) is a representative method for estimating the technical efficiency of such production. First, as a result of estimating the production function by setting the output variable as total output or value-added, in both cases, the output increased significantly in all manufacturing sectors as inputs of labor, capital, and intermediate increased. On the other hand, R&D investment has a large impact on output in chemical, electronics, and machinery industries. Next, as a result of estimating the technological efficiency through the production function, when the total output is set as the output variable, the overall average of each sector is 0.8 or more, showing mostly high efficiency. However, when value-added was set, Japan had the highest level in most manufacturing sectors, while other countries were lower than the efficiency of the total output. Comparing the three countries of Korea, China and Japan, Japan showed the highest efficiency in most manufacturing sectors, and Korea was about half or one third of Japan and China was lower than Korea. However, in the food and electronics sectors, China is higher than Korea, indicating that China's production efficiency has greatly improved. As such, Korea is not able to narrow its gap with Japan relatively faster than China's rapid growth. Therefore, various policy supports are needed to promote technology development. In addition, in order to improve manufacturing productivity, it is necessary to shift to an economic structure that can raise technological efficiency as well as technology development.

  • PDF

Competitiveness and Export Performance in Korean Manufacturing Enterprises : Focusing on the Comparison of Conglomerates and SMEs (국내 제조기업의 경쟁력과 수출: 대기업과 중소기업의 비교를 중심으로)

  • Lee, Dong-Joo
    • Korea Trade Review
    • /
    • v.43 no.3
    • /
    • pp.1-26
    • /
    • 2018
  • This study estimates the technical efficiency and total factor productivity(TFP) of and analyzes the relationship between TFP and exports for Korean manufacturing companies from 2000 to 2016. Specially, TFP is decomposed into Technical Change(TC), Technical Efficiency Change (TEC), and Sale Effect(SE), and compared between large and small enterprises. First, in the case of technical efficiency, the Korean economy has been very vulnerable to external shocks, such as the sharp decline following the 2008 financial crisis. The efficiency of the electronics, automobile, and machinery sectors is low and needs to be improved. In addition, the technological efficiency of large enterprises is higher than that of SMEs in most manufacturing sub-sectors except for non-ferrous metals. In the case of TFP, most changes are due to TC, and the effective combination of labor, capital and the effect of scale have little effect, suggesting that improvement of internal structure is urgent. In addition, volatility due to the impact of the financial crisis in 2008 was much larger in SMEs than in large companies, so external economic impacts are more greater for SMEs than large enterprises. The relationship between TFP decomposition factors and exports shows that TC has a positive effect only on exports of SMEs. Therefore, in order to increase exports, in the case of SMEs, R&D support to promote technological development is needed. In the case of large companies, it is necessary to establish differentiated strategies for each export market, competitor company, and item to link efficiency and scale effect of exports.

  • PDF