• Title/Summary/Keyword: Stitching images

Search Result 94, Processing Time 0.027 seconds

Regional Linear Warping for Image Stitching with Dominant Edge Extraction

  • Yoo, Jisung;Hwang, Sung Soo;Kim, Seong Dae;Ki, Myung Seok;Cha, Jihun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.10
    • /
    • pp.2464-2478
    • /
    • 2013
  • Image stitching techniques produce an image with a wide field-of-view by aligning multiple images with a narrow field-of-view. While conventional algorithms successfully stitch images with a small parallax, structure misalignment may occur when input images contain a large parallax. This paper presents an image stitching algorithm that aligns images with a large parallax by regional linear warping. To this end, input images are first approximated as multiple planar surfaces, and different linear warping is applied to each planar surface. For approximating input images as multiple planar surfaces, the concept of dominant edges is introduced. Dominant edges are defined as conspicuous edges of lines in input images, and extracted dominant edges identify the boundaries of each planar surface. Dominant edge extraction is conducted by detecting distinct changes of local characteristics around strong edge pixels. Experimental results show that the proposed algorithm successfully stitches images with a large parallax without structure misalignment.

Enhancement on 3 DoF Image Stitching Using Inertia Sensor Data (관성 센서 데이터를 활용한 3 DoF 이미지 스티칭 향상)

  • Kim, Minwoo;Kim, Sang-Kyun
    • Journal of Broadcast Engineering
    • /
    • v.22 no.1
    • /
    • pp.51-61
    • /
    • 2017
  • This paper proposes a method to generate panoramic images by combining conventional feature extraction algorithms (e.g., SIFT, SURF, MPEG-7 CDVS) with sensed data from an inertia sensor to enhance the stitching results. The challenge of image stitching increases when the images are taken from two different mobile phones with no posture calibration. Using inertia sensor data obtained by the mobile phone, images with different yaw angles, pitch angles, roll angles are preprocessed and adjusted before performing stitching process. Performance of stitching (e.g., feature extraction time, inlier point numbers, stitching accuracy) between conventional feature extraction algorithms is reported along with the stitching performance with/without using the inertia sensor data.

An Improved RANSAC Algorithm Based on Correspondence Point Information for Calculating Correct Conversion of Image Stitching (이미지 Stitching의 정확한 변환관계 계산을 위한 대응점 관계정보 기반의 개선된 RANSAC 알고리즘)

  • Lee, Hyunchul;Kim, Kangseok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.1
    • /
    • pp.9-18
    • /
    • 2018
  • Recently, the use of image stitching technology has been increasing as the number of contents based on virtual reality increases. Image Stitching is a method for matching multiple images to produce a high resolution image and a wide field of view image. The image stitching is used in various fields beyond the limitation of images generated from one camera. Image Stitching detects feature points and corresponding points to match multiple images, and calculates the homography among images using the RANSAC algorithm. Generally, corresponding points are needed for calculating conversion relation. However, the corresponding points include various types of noise that can be caused by false assumptions or errors about the conversion relationship. This noise is an obstacle to accurately predict the conversion relation. Therefore, RANSAC algorithm is used to construct an accurate conversion relationship from the outliers that interfere with the prediction of the model parameters because matching methods can usually occur incorrect correspondence points. In this paper, we propose an algorithm that extracts more accurate inliers and computes accurate transformation relations by using correspondence point relation information used in RANSAC algorithm. The correspondence point relation information uses distance ratio between corresponding points used in image matching. This paper aims to reduce the processing time while maintaining the same performance as RANSAC.

Images Grouping Technology based on Camera Sensors for Efficient Stitching of Multiple Images (다수의 영상간 효율적인 스티칭을 위한 카메라 센서 정보 기반 영상 그룹핑 기술)

  • Im, Jiheon;Lee, Euisang;Kim, Hoejung;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.22 no.6
    • /
    • pp.713-723
    • /
    • 2017
  • Since the panoramic image can overcome the limitation of the viewing angle of the camera and have a wide field of view, it has been studied effectively in the fields of computer vision and stereo camera. In order to generate a panoramic image, stitching images taken by a plurality of general cameras instead of using a wide-angle camera, which is distorted, is widely used because it can reduce image distortion. The image stitching technique creates descriptors of feature points extracted from multiple images, compares the similarities of feature points, and links them together into one image. Each feature point has several hundreds of dimensions of information, and data processing time increases as more images are stitched. In particular, when a panorama is generated on the basis of an image photographed by a plurality of unspecified cameras with respect to an object, the extraction processing time of the overlapping feature points for similar images becomes longer. In this paper, we propose a preprocessing process to efficiently process stitching based on an image obtained from a number of unspecified cameras for one object or environment. In this way, the data processing time can be reduced by pre-grouping images based on camera sensor information and reducing the number of images to be stitched at one time. Later, stitching is done hierarchically to create one large panorama. Through the grouping preprocessing proposed in this paper, we confirmed that the stitching time for a large number of images is greatly reduced by experimental results.

Boundary Stitching Algorithm for Fusion of Vein Pattern (정맥패턴 융합을 위한 Boundary Stitching Algorithm)

  • Lim, Young-Kyu;Jang, Kyung-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.521-524
    • /
    • 2005
  • This paper proposes a fusion algorithm which merges multiple vein pattern images into a single image, larger than those images. As a preprocessing step of template matching, during the verification of biometric data such as fingerprint image, vein pattern image of hand, etc., the fusion technique is used to make reference image larger than the candidate images in order to enhance the matching performance. In this paper, a new algorithm, called BSA (Boundary Stitching Algorithm) is proposed, in which the boundary rectilinear parts extracted from the candidate images are stitched to the reference image in order to enlarge its matching space. By applying BSA to practical vein pattern verification system, its verification rate was increased by about 10%.

  • PDF

Fast Image Stitching Based on Improved SURF Algorithm Using Meaningful Features (의미 있는 특징점을 이용한 향상된 SURF 알고리즘 기반의 고속 이미지 스티칭 기법)

  • Ahn, Hyo-Chang;Rhee, Sang-Burm
    • The KIPS Transactions:PartB
    • /
    • v.19B no.2
    • /
    • pp.93-98
    • /
    • 2012
  • Recently, we can easily create high resolution images with digital cameras for high-performance and make use them at variety fields. Especially, the image stitching method which adjusts couple of images has been researched. Image stitching can be used for military purposes such as satellites and reconnaissance aircraft, and computer vision such as medical image and the map. In this paper, we have proposed fast image stitching based on improved SURF algorithm using meaningful features in the process of images matching after extracting features from scenery image. The features are extracted in each image to find out corresponding points. At this time, the meaningful features can be searched by removing the error, such as noise, in extracted features. And these features are used for corresponding points on image matching. The total processing time of image stitching is improved due to the reduced time in searching out corresponding points. In our results, the processing time of feature matching and image stitching is faster than previous algorithms, and also that method can make natural-looking stitched image.

Performance of Feature-based Stitching Algorithms for Multiple Images Captured by Tunnel Scanning System (터널 스캐닝 다중 촬영 영상의 특징점 기반 접합 알고리즘 성능평가)

  • Lee, Tae-Hee;Park, Jin-Tae;Lee, Seung-Hun;Park, Sin-Zeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.30-42
    • /
    • 2022
  • Due to the increase in construction of tunnels, the burdens of maintenance works for tunnel structures have been increasing in Korea. In addition, the increase of traffic volume and aging of materials also threatens the safety of tunnel facilities, therefore, maintenance costs are expected to increase significantly in the future. Accordingly, automated condition assessment technologies like image-based tunnel scanning system for inspection and diagnosis of tunnel facilities have been proposed. For image-based tunnel scanning system, it is key to create a planar image through stitching of multiple images captured by tunnel scanning system. In this study, performance of feature-based stitching algorithms suitable for stitching tunnel scanning images was evaluated. In order to find a suitable algorithm SIFT, ORB, and BRISK are compared. The performance of the proposed algorithm was determined by the number of feature extraction, calculation speed, accuracy of feature matching, and image stitching result. As for stitching performance, SIFT algorithm was the best in all parts of tunnel image. ORB and BRISK also showed satisfactory performance and short calculation time. SIFT can be used to generate precise planar images. ORB and BRISK also showed satisfactory stitching results, confirming the possibility of being used when real-time stitching is required.

Dynamic Stitching Algorithm for 4-channel Surround View System using SIFT Features (SIFT 특징점을 이용한 4채널 서라운드 시스템의 동적 영상 정합 알고리즘)

  • Joongjin Kook;Daewoong Kang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.56-60
    • /
    • 2024
  • In this paper, we propose a SIFT feature-based dynamic stitching algorithm for image calibration and correction of a 360-degree surround view system. The existing surround view system requires a lot of processing time and money because in the process of image calibration and correction. The traditional marker patterns are placed around the vehicle and correction is performed manually. Therefore, in this study, images captured with four fisheye cameras mounted on the surround view system were distorted and then matched with the same feature points in adjacent images through SIFT-based feature point extraction to enable image stitching without a fixed marker pattern.

  • PDF

Fast image stitching method for handling dynamic object problems in Panoramic Images

  • Abdukholikov, Murodjon;Whangbo, Taegkeun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5419-5435
    • /
    • 2017
  • The construction of panoramic images on smartphones and low-powered devices is a challenging task. In this paper, we propose a new approach for smoothly stitching images on mobile phones in the presence of moving objects in the scene. Our main contributions include handling moving object problems, reducing processing time, and generating rectangular panoramic images. First, unique and robust feature points are extracted using fast ORB method and a feature matching technique is applied to match the extracted feature points. After obtaining good matched feature points, we employ the non-deterministic RANSAC algorithm to discard wrong matches, and the hommography transformation matrix parameters are estimated with the algorithm. Afterward, we determine precise overlap regions of neighboring images and calculate their absolute differences. Then, thresholding operation and noise removal filtering are applied to create a mask of possible moving object regions. Sequentially, an optimal seam is estimated using dynamic programming algorithm, and a combination of linear blending with the mask information is applied to avoid seam transition and ghosting artifacts. Finally, image-cropping operation is utilized to obtain a rectangular boundary image from the stitched image. Experiments demonstrate that our method is able to produce panoramic images quickly despite the existence of moving objects.

Implementation of the Panoramic System Using Feature-Based Image Stitching (특징점 기반 이미지 스티칭을 이용한 파노라마 시스템 구현)

  • Choi, Jaehak;Lee, Yonghwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.61-65
    • /
    • 2017
  • Recently, the interest and research on 360 camera and 360 image production are expanding. In this paper, we describe the feature extraction algorithm, alignment and image blending that make up the feature-based stitching system. And it deals with the theory of representative algorithm at each stage. In addition, the feature-based stitching system was implemented using OPENCV library. As a result of the implementation, the brightness of the two images is different, and it feels a sense of heterogeneity in the resulting image. We will study the proper preprocessing to adjust the brightness value to improve the accuracy and seamlessness of the feature-based stitching system.

  • PDF