• Title/Summary/Keyword: Stitching Error

Search Result 21, Processing Time 0.048 seconds

Method of Video Stitching based on Minimal Error Seam (최소 오류 경계를 활용한 동적 물체 기반 동영상 정합 방안)

  • Kang, Jeonho;Kim, Junsik;Kim, Sang-IL;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.24 no.1
    • /
    • pp.142-152
    • /
    • 2019
  • There is growing interest in ultra-high-resolution content that gives a more realistic sense of presence than existing broadcast content. However, in order to provide ultra-high-resolution contents in existing broadcast services, there are limitations in view angle and resolution of the image acquisition device. In order to solve this problem, many researches on stitching, which is an image synthesis method using a plurality of input devices, have been conducted. In this paper, we propose method of dynamic object based video stitching using minimal error seam in order to overcome the temporal invariance degradation of moving objects in the stitching process of horizontally oriented videos.

Development and Evaluation of Stitching Algorithm With five Degrees of Freedom for Three-dimensional High-precision Texture of Large Surface (대면적/고정밀 3차원 표면형상의 5자유도 정합법 개발 및 평가)

  • Lee, Dong-Hyeok;Ahn, Jung-Hwa;Cho, Nham Gyoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.118-126
    • /
    • 2014
  • In this paper, a new method is proposed for the five-degree-of-freedom precision alignment and stitching of three-dimensional surface-profile data sets. The control parameters for correcting thealignment error are calculated from the surface profile data for overlapped areas among the adjacent measuring areas by using the "least squares method" and "maximum lag position of cross correlation function." To ensure the alignment and stitching reliability, the relationships betweenthe alignment uncertainty, overlapped area, and signal-to-noise level of the measured profile data are investigated. Based on the results of this uncertainty analysis, an appropriate size is proposed for the overlapped area according to the specimen's surface texture and noise level.

Accurate Stitching for Polygonal Surfaces

  • Zhu, Lifeng;Li, Shengren;Wang, Guoping
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.71-77
    • /
    • 2010
  • Various applications, such as mesh composition and model repair, ask for a natural stitching for polygonal surfaces. Unlike the existing algorithms, we make full use of the information from the two feature lines to be stitched up, and present an accurate stitching method for polygonal surfaces, which minimizes the error between the feature lines. Given two directional polylines as the feature lines on polygonal surfaces, we modify the general placement method for points matching and arrive at a closed-form solution for optimal rotation and translation between the polylines. Following calculating out the stitching line, a local surface optimization method is designed and employed for postprocess in order to gain a natural blending of the stitching region.

Fast Image Stitching Based on Improved SURF Algorithm Using Meaningful Features (의미 있는 특징점을 이용한 향상된 SURF 알고리즘 기반의 고속 이미지 스티칭 기법)

  • Ahn, Hyo-Chang;Rhee, Sang-Burm
    • The KIPS Transactions:PartB
    • /
    • v.19B no.2
    • /
    • pp.93-98
    • /
    • 2012
  • Recently, we can easily create high resolution images with digital cameras for high-performance and make use them at variety fields. Especially, the image stitching method which adjusts couple of images has been researched. Image stitching can be used for military purposes such as satellites and reconnaissance aircraft, and computer vision such as medical image and the map. In this paper, we have proposed fast image stitching based on improved SURF algorithm using meaningful features in the process of images matching after extracting features from scenery image. The features are extracted in each image to find out corresponding points. At this time, the meaningful features can be searched by removing the error, such as noise, in extracted features. And these features are used for corresponding points on image matching. The total processing time of image stitching is improved due to the reduced time in searching out corresponding points. In our results, the processing time of feature matching and image stitching is faster than previous algorithms, and also that method can make natural-looking stitched image.

3D Surface and Thickness Profile Measurements of Si Wafers by Using 6 DOF Stitching NIR Low Coherence Scanning Interferometry (6 DOF 정합을 이용한 대 영역 실리콘 웨이퍼의 3차원 형상, 두께 측정 연구)

  • Park, Hyo Mi;Choi, Mun Sung;Joo, Ki-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.107-114
    • /
    • 2017
  • In this investigation, we describe a metrological technique for surface and thickness profiles of a silicon (Si) wafer by using a 6 degree of freedom (DOF) stitching method. Low coherence scanning interferometry employing near infrared light, partially transparent to a Si wafer, is adopted to simultaneously measure the surface and thickness profiles of the wafer. For the large field of view, a stitching method of the sub-aperture measurement is added to the measurement system; also, 6 DOF parameters, including the lateral positioning errors and the rotational error, are considered. In the experiment, surface profiles of a double-sided polished wafer with a 100 mm diameter were measured with the sub-aperture of an 18 mm diameter at $10\times10$ locations and the surface profiles of both sides were stitched with the sub-aperture maps. As a result, the nominal thickness of the wafer was $483.2{\mu}m$ and the calculated PV values of both surfaces were $16.57{\mu}m$ and $17.12{\mu}m$, respectively.

Surface-error Measurement for a Convex Aspheric Mirror Using a Double-stitching Method (이중 정합법을 이용한 볼록비구면 반사경의 형상 오차 측정)

  • Kim, Goeun;Lee, Yun-Woo;Yang, Ho-Soon
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.6
    • /
    • pp.314-322
    • /
    • 2021
  • A reflecting telescope consists of a concave primary mirror and a convex secondary mirror. The primary mirror is easy to measure, because it converges the beam from an interferometer, while the secondary mirror diverges the beam and so is not easy to measure, even though it is smaller than the primary mirror. In addition, the Korsch-type telescope uses the central area of the secondary mirror, so that the entire area of the secondary mirror needs to be measured, which the classical Hindle test cannot do. In this paper, we propose a double-stitching method that combines two separate area measurements: the annular area, measured using the Hindle stitching method, and the central area, measured using a spherical wave from the interferometer. We test the surface error of a convex asphere that is 202 mm in diameter, with 499 mm for its radius of curvature and -4.613 for its conic constant. The surface error is calculated to be 19.5±1.3 nm rms, which is only 0.7 nm rms different from the commercial stitching interferometer, ASI. Also, the two results show a similar 45° astigmatism aberration. Therefore, our proposed method is found to be valuable for testing the whole area of a convex asphere.

Testing of a Convex Aspheric Secondary Mirror for the Cassegrain Telescope (카세그레인 망원경의 볼록비구면 반사경 파면오차 측정)

  • Kim, Goeun;Rhee, Hyug-Gyo;Yang, Ho-Soon
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.290-294
    • /
    • 2017
  • The Cassegrain telescope consists of a primary concave mirror and a secondary convex mirror. In the case of a secondary mirror, it is more difficult to test wavefront error than for a primary mirror, because it reflects the entire testing beam, as it is convex in shape. In this paper we tested the wavefront error of a complex aspheric convex secondary mirror by using the Simpson-Oland-Meckel Hindle test. To separate the systematic errors, such as fabrication error and alignment error of a meniscus lens, we adopted the QN absolute test (pixel-based absolute test using the quasi-Newton method) as well. Finally, we compared the measured result with that of an ASI (Aspheric Stitching Interferometer) made by the QED company, which resulted in an rms difference of only 2.5 nm, showing a similar shape of astigmatism aberration.

Very Large Scale Analysis of Surfaces for Diamond Turned Machine Diagnosis (다이아몬드 선삭 가공기의 진단을 위한 대영역 표면 해석)

  • 김승우;장인철;김동식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.687-691
    • /
    • 2000
  • Diamond turning machines for manufacture of precision optics require deliberate diagnosis to ensure that all the machine elements are properly operating, kinematically, dynamically and thermally, to produce demanded work qualities. One effective way is to directly inspect topographical features of work surfaces that have been carefully generated with prescribed machining conditions intended to exaggerate faulty consequences of any ill-operating machine elements. In this research, a very-large-scale Phase measuring interferometric system that has been developed for years at Korea Advanced Institute of Science and Technology is used to fulfill the metrological requirements fur the surface analysis. A special stitching technique is used to extend the measuring range, which integrates all the patches that are separately sampled over the whole surface while moving the stage. Then, the measured surface profile is analyzed to releated the machine error sources. For this, zernike polynomial fitting is used together with the wavelet filter and the fourier transform. Experimental results showed that the suggested technique in this study is very effective in diagnosing actual diamond turning machines

  • PDF

Analysis of a Composite Double Cantilever Beam with Stitched Reinforcements Under Mixed Mode Loading : Formulation (I)

  • Jang Insik;Sankar Bhavani V.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.567-577
    • /
    • 2005
  • Several methods for improving the interlaminar strength and fracture toughness of composite materials are developed. Through-the-thickness stitching is considered one of the most common ways to prevent delamination. Stitching significantly increases the Mode I fracture toughness and moderately improves the Mode II fracture toughness. An analytical model has been developed for simulating the behavior of stitched double cantilever beam specimen under various loading conditions. For z-directional load and moment about the y-axis the numerical solutions are compared with the exact solutions. The derived formulation shows good accuracy when the relative error of displacement and rotation between numerical and exact solution were calculated. Thus we can use the present model with confidence in analyzing other problems involving stitched beams.