• Title/Summary/Keyword: Stir-zone

Search Result 89, Processing Time 0.025 seconds

Friction Stir Welding of Ferritice Stainless Steel (페라이트계 스테인리스강의 마찰교반접합)

  • Ahn, Byung-Wook;Choi, Don-Hyun;Yeon, Yun-Mo;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.14-17
    • /
    • 2014
  • Ferritic stainless steels are widely used in the construction industry and in exhaust manifolds due to their low cost and relatively superior stress corrosion cracking resistance and pitting corrosion resistance compared to austenite stainless steels. Ferritic stainless steels are currently welded by various welding process including gas tungsten arc welding (GTAW), electron resistance welding (ERW) and laser beam welding. However, when these stainless steels are welded by fusion welding, some problems occur in the fusion zone (FZ) and heat affected zone (HAZ). First, the ductility of the weld is reduced due to the grain growth in the FZ and HAZ. Second, as its HAZ is frequently sensitized during welding, corrosion resistance deteriorates in this region due to the Cr depletion zone. To prevent these problems, it is recommended that ferritic stainless steels be welded with a low heat input. In this study, recent researches in the view of friction stir welded ferritic stainless steels are briefly reviewed.

Experimental Comparison of Weld Zone Properties for $2mm^{t}$ Aluminum Alloy Sheets Friction-Stir-Welded using Milling Machine. (마찰용접 된 박판재의 용접부 특성에 대한 실험 비교)

  • Han, Min-Su;Jang, Seok-Ki;Lee, Don-Chool
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1747-1751
    • /
    • 2003
  • The paper shows properties such as vickers hardness, yielding and ultimate stresses for the weld zone of the butt and the lap jointed specimens, and compare maximum loads, stress-strain curves, deformation appearance after guided bending test and fracture appearance for butt and lap jointed specimens. The research in this experiment also shows the weldability of the butt joint specimen is better than that of the lap joint specimen using FSW with $2mm^{t}$ aluminum alloy sheet in milling machine.

  • PDF

Investigation for Microstructure and Hardness of Welded Zone of Cu-Ni Alloy using W92-Ni-Fe Sintering Tool (W92-Ni-Fe 소결툴을 이용한 Cu-Ni 합금의 용접부미세조직과 경도 특성)

  • Yoon, Tae-Jin;Park, Sang-Won;Kang, Myung-Chang;Noh, Joong-Suk;Chung, Sung-Wook;Kang, Chung-Yun
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.181-186
    • /
    • 2015
  • In this study, the effect of the friction stir welding (FSW) was compared with that of the gas tungsten arc welding (GTAW) on the microstructure and microhardness of Cu-Ni alloy weldment. The weldment of 10 mm thickness was fabricated by FSW and GTAW, respectively. Both weldments were compared with each other by optical microstructure, microhardness test and grain size measurement. Results of this study suggest that the microhardness decreased from the base metal (BM) to the heat affected zone (HAZ) and increased at fusion zone (FZ) of GTAW and stir zone (SZ) of FSW. the minimum Hv value of both weldment was obtained at HAZ, respectively, which represents the softening zone, whereas Hv value of FSW weldment was little higher than that of GTAW weldment. These phenomena can be explained by the grain size difference between HAZs of each weldment. Grain size was increased at the HAZ during FSW and GTAW. Because FSW is a solid-state joining process obtaining the lower heat-input generated by rotating shoulder than heat generated in the arc of GTAW.

Microstructures of Friction Stir Lap Weld in A5052-H112 Alloy (A5052-H112 합금의 겹치기 마찰교반접합 조직 특성)

  • Ko, Young-Bong;Lee, Joong-Hun;Park, Kyeung-Chae
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.17-24
    • /
    • 2009
  • The Friction Stir Welding(FSW) has mainly been used for making butt joints in Al alloys. Development of Friction Stir Lap Welding(FSLW) would expand the number of applications. Microstructure of FSLW in A5052-H112 alloy was investigated under varying rotation and welding speed. As the rotation speed was increased and the welding speed was decreased, a amount of heat was increased. As a result, bead interval was narrower, bead width are larger, and experimental bead interval was almost similar to theoretical bead interval. Typical microstructures of FSLW A5052-H112 alloy consist of three zones, including Stir Zone(SZ), Thermo-Mechanically Affected Zone(TMAZ) and Heat Affected Zone(HAZ). As a amount of heat was increased, average grain size was larger in three zones. Nevertheless, the aspect ratio was almost fixed for FSLW conditions. The misorientation of SZ, HAZ and TMAZ was examined. A large number of low angle grain boundaries, which were formed by severe plastic deformation, were showed in TMAZ as comparison with SZ and HAZ. Microhardness distribution was high in order of BM, SZ, TMAZ, and HAZ. The Micro-hardness distribution in HAZ, TMAZ of upper plate were lager than lower plate. Relationship between average grain size and microhardness was almost corresponded to Hall-Petch equation.

Weldability of Al 7075 Alloy according to different tools and welding conditions by F.S.W (Al 7075의 마찰교반 용접부 특성에 관한 연구)

  • Jang Seok-Ki;Jeon Jeong-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.30-41
    • /
    • 2006
  • This paper shows mechanical Properties and behaviors of macrostructures for specimens welded by F.S.W according to welding conditions and tool dimensions with $6.35mm_t$ aluminum 7075-T651 alloy plate. It apparently results in defect-free weld zone in case transition speed was changed to 15mm/min 61mm/min and 124mm/min under conditions of tool rotation speed such as 800rpm. 1250rpm and 1600rpm respectively with tool's Pin diameter 40mm and 60mm. The optimum mechanical property, ultimate stress,${\sigma}_Y=470Mpa$ is obtained at the condition of 124mm/min of travel speed with 800rpm of tool rotation speed using full screw type pin. shoulder dia. $20{\phi}mm$ pin dia. $6{\phi}mm$ and pin length 6mm. The full-screw type and the half-screw type pin shows the similar behaviors of weldability. It is found that the size of nugget is depended on tool transition speed and tool dimension by macrostructures of the cross section of weld zone.

Weldability of Al 7075 Alloy according to different tools and welding conditions by F.S.W (Al 7075의 마찰교반 용접부 특성에 관한 연구)

  • Jang, Seok-Ki;Jeon, Jeong-Il
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.348-358
    • /
    • 2005
  • This paper showed mechanical properties and behaviors of macrostructures for specimens welded by F.S.W according to welding conditions and tool with 6.35$mm_t$ aluminum 7075-T651alloy plate. It resulted in defect-free weld zone in case tool rotation speed was 800rpm, 1250rpm and 1600rpm respectively that transition speed was changed to 15mm/min, 61mm/min and 124mm/min with tool's pin diameter 4${\Phi}$mm and 6${\Phi}$mm. The optimum mechanical property, ultimate stress,${\sigma}_Y$=470Mpa was obtained at the condition of 124mm/min of travel speed with 800rpm of tool rotation speed using full screw type pin, shoulder dia. 20${\Phi}$mm, pin dia.6${\Phi}$mm and pin length 6mm. The full-screw type and the half-screw type pin showed the similar behaviors of weldability. It is found that the size of nugget was depended on tool transition speed and tool dimension by macrostructures of the cross section of weld zone.

  • PDF

Manufacturing and Properties of Metal Based Composite Produced By Friction Stir Processing (마찰교반프로세스를 이용한 금속기 복합소재 제조 및 특성)

  • Choi, Don-Hyun;Yeon, Yun-Mo;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.27-33
    • /
    • 2012
  • Friction stir processing (FSP), developed based on the basic principles of friction stir welding(FSW), a solid-state joining process originally developed for various metal alloys, is an emergingmetalworking technique that can provide localized modification and control of microstructures in near-surface layers of processed metallic components. The FSP causes intense plastic deformation, material mixing, and thermal exposure, resulting in significant microstructural refinement, densification, and homogeneity of the processed zone. The FSP technique has been successfully used for producing the fine-grained structure and surface composite, modifying the microstructure of materials, and synthesizing the composite and intermetallic compound in situ. In this review article, the current state of the understanding and development of FSP is addressed.

Microstructural and Mechanical Analysis of a Friction Stir Welded Joint of Dissimilar Advanced High-Strength Steels (초고강도 합금강의 이종마찰교반 접합부에서의 미세조직 특성 및 기계적 물성 연구)

  • Lee, J.W.;Cho, H.H.;Mondal, Mounarik;Das, Hrishikesh;Hong, S.T.
    • Transactions of Materials Processing
    • /
    • v.29 no.1
    • /
    • pp.11-19
    • /
    • 2020
  • For microstructural analysis of a friction stir welded (FSWed) joint of advanced high-strength steels, dual phase (DP) and complex phase (CP) steels, are studied. FSWed joints are successfully fabricated in the following four cases: (i) DP/DP; (ii) CP/CP; (iii) DP/CP, where the advancing side is DP and the retreating side is CP; (iv) CP/DP, where the advancing side is CP and the retreating side is DP. The stir zone (SZ) of (i) the DP/DP joint mainly consists of lath martensite, while the stir zone of (ii) the CP/CP joint consists not only of lath martensite but also of bainite. In the case of (iii) DP/CP and (iv) CP/DP, they exhibit a similar microstructure including acicular-shaped phases in the joints; however, cross-sections of the joints show differences in material mixing in each case. In (iv) the CP/DP joint, temperature towards the CP steel is sufficient to cause softening, thus leading to better mixing than that in (iii) DP/CP. The phases of the SZ in each of the four cases are formed by phase transformation during the FSWed process; however, the transformed phase volume fraction of CP steel is lower than that of DP steel, indicating that dynamic recrystallization occurs mainly in CP steel. The hardness values of the SZ are significantly higher than those of the base materials, especially, the SZ of (iii) the DP/CP joint has the highest value due to highest fraction of lath martensite.

Recent Trends of Friction Stir Welding of Titanium (타이타늄 소재 마찰교반용접 기술 동향)

  • Chun, Chang-Keun;Kim, Sung-Wook;Kim, Heung-Joo;Chang, Woong-Seong;Noh, Joong-Suk
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.16-20
    • /
    • 2013
  • Titanium and its alloys have been widely using in the various field of industry application due to high corrosion resistant properties and mechanical properties. Titanium is highly reactive in the high temperature state and the formation of titanium oxide and porosities in the nuggets of fusion welding will results in the degradation of the mechanical properties. For this reason the studies of friction stir welding for titanium have been investigated recently. The FSW zones of titanium were classified by the weld nugget (WN), the linear transition boundary (TB) and the heat affected zone (HAZ). The WN along with titanium parent was characterized by the presence of twins and dislocations. The average grain size and hardness of WN has been changed according to heat input. The grain refinement resulted from the FSW increased the hardness in the stir zone. Sound dissimilar joints between SUS 304 and CP-Ti were achieved using an advancing speed of 50 mm/min and rotation speeds in the range of 700-1100 rpm. Aluminum 1060 and titanium alloy Ti-6Al-4V plates were lap joined by friction stir welding, hence the ultimate tensile shear strength of joint reached 100% of Al 1060. Mg alloy and Ti were successfully butt joined by inserting a probe into the Mg alloy plate with slightly offsetting. But Ti-Al intermetallic compound layers formed at the interface of these joints.

Influence of Welding Parameters on Macrostructure and Mechanical Properties of Friction-Stir-Spot-Welded 5454-O Aluminum Alloy Sheets (마찰교반점접합한 5454-O 알루미늄합금 판재의 접합부 거시조직 및 기계적 특성에 미치는 접합인자의 영향)

  • Choi, Won-Ho;Kwon, Yong-Jai;Yoon, Sung-Ook;Kang, Myoung-Soo;Lim, Chang-Yong;Seo, Jong-Dock;Hong, Sung-Tae;Park, Dong-Hwan;Lee, Kwang-Hak
    • Journal of Welding and Joining
    • /
    • v.29 no.6
    • /
    • pp.56-64
    • /
    • 2011
  • Friction stir spot welding between 5454 aluminum alloy sheets with the different thicknesses of 1.4 and 1.0 mm was performed. In the welding process, the tool for welding was rotated ranging from 500 to 2500, and plunged to the depth of 1.8 mm under a constant tool plunge speed of 100 mm/min. And then, the rotating tool was maintained at the plunge depth during the dwell time ranging from 0 to 7 sec. The pull-out speed of the rotating tool was 100 mm/min. The increase of tool rotation speed resulted in the change of the macrostructure of friction-stir-spot-welded zone, especially the geometry of welding interface. The results of the tensile shear test showed that the total displacement and toughness of the welds were increased with the increase of the tool rotation speed, although the maximum tensile shear load was decreased. However, the change in the dwell time at the plunge depth of the tool did not produce the remarkable variation in the macrostructure and mechanical properties of the welds. In all cases, the average hardness in friction-stir-spot-welded zone was higher than that of the base metal zone. By the friction stir spot welding technique, the welds with the excellent mechanical properties than the mechanically-clinched joints could be obtained.