• Title/Summary/Keyword: Stimulus pulse

Search Result 67, Processing Time 0.025 seconds

Dynamics of Rouleaux Patterns of Red Blood Cells under Pulse Magnetic Field (강한 펄스자기장 자극에 의한 적혈구 연전현상의 활동성 조사)

  • Hwang, Do Guwn
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.3
    • /
    • pp.92-97
    • /
    • 2017
  • It is widely known that pulsed magnetic field (PMF) is very useful tool to manipulate chemical and physiological processes in human body. The purpose of our study is to observe dynamics of rouleaux patterns of red blood cells (RBC) under PMF. The aggregation of RBCs or rouleaux formation is caused by fibrinogen in blood plasma. The maximum magnetic field intensity is 0.27 T and pulse time of 0.102 msec and pulse repetition rate was 1 Hz. PMF stimulus was applied to the palm of left hand for 5, 10, 15 and 20 min. Live blood analysis was used in vitro in order to quantitatively estimate the velocity of RBC exposed to PMF stimulus. The velocity of stacked-RBC of 10 minute PMF stimulus was increased up to $8{\times}10^{-4}m/sec$, but it decreased rapidly as the time passed. The results of present study have adduced that PMF stimulus on hand provide the improvement of RBC rouleaux formation, increase of RBC's moving velocity as well as low blood viscosity.

Changes in Sympathetic Nervous System Responses of Healthy Adult Women with Changes in the Stimulus Intensity of High Frequency Transcutaneous Electrical Nerve Stimulation (고빈도 경피신경전기자극의 자극강도에 따른 정상 성인여성 교감신경성 반응의 변화)

  • Choi, Yoo-Rim;Lee, Jeong-Woo
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.1
    • /
    • pp.61-66
    • /
    • 2010
  • Purpose: The purpose of this study was to investigate the change in sympathetic nervous system responses of healthy adult women with changes in stimulus intensity of high frequency transcutaneous electrical nerve stimulation. Methods: Twenty-four healthy subjects (women) received high frequency electrical stimulation of the forearm. The subjects were randomly assigned to one of two groups; a low intensity stimulation group (n=12) and a high intensity stimulation group (n=12). The electrode attachment was arranged on the forearm of the dominant arm and the electricity stimulus time was 20 minutes. Measured items included skin conductance, pulse rate, skin temperature, and respiration rate. Each was measured at 4 times. Results: Skin conductance and skin temperature showed significant group by time interactions, though there were no significant group and time effects. There were no significant differences according to time, group effect, and a group by time interaction in pulse and respiration rates. Conclusion: High frequency and high intensity electrical stimulation may be helpful for the improvement of sudomotor function through the activation of the sympathetic nervous system. Also, high frequency and low intensity electrical stimulation may be helpful for the reduction of sudomotor function via inhibition of the sympathetic nervous system.

Mating Call Structure and Variation of the Frog Rana nigromaculata (참개구리(Rana nigromaculata)의 짝짓기 소리의 구조와 변이)

  • 박시룡;양서영
    • The Korean Journal of Ecology
    • /
    • v.20 no.6
    • /
    • pp.423-438
    • /
    • 1997
  • The structure and variation of the mating call in Rana nigromaculata was studied in a population at Da-rak, Chong-won, Chung-buk (36$\circ$ 37' latitude, 127$\circ$ 21' longitude) in Korea. The mating call consists of 3 to 8 pulse groups divided by clear silent intervals. Each pulse group is also composed of fine pulses. Temperature and body size affect the temporal and spectral characteristics of the mating call. Pulse, pulse group repetition rate and dominant frequency rise with increasing temperature, whereas pulse grouprepetition rate and dominant frequency decrease with increasing body size. A playback experiment was designed to establish the effect of a potential intruder on male calling. During the stimulus periods, resident males markedly decreased the pulse repetition rate, and icreased the rate of pulse groups, dominant frequency, and the number of call groups. This results indicate that this species responds in a graded fashion when interacting with other individuals.

  • PDF

Implementation of Externally Controllable Miniaturized Capsule for the Stimulation of Intestine (체외 제어 가능한 소화관 자극용 초소형 캡슐 구현)

  • 박종철;박희준;이정우;송병섭;이승하;조진호
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2923-2926
    • /
    • 2003
  • In this paper, a swallowable miniaturized capsule, which applicable for electrical stimulation of digestive organ to improve the motion of intestine in research purpose, is proposed and implemented. The developed capsule can be controlled for the behavior of the power on/off, amplitude and pulse rate for the patient stimulus, by internally equipped with miniaturized RF receiver that linked by the command of external transmitter The experimental result of the implemented miniaturized capsule in the animal intestine show the ability of effective control for the stimulus parameters.

  • PDF

Study on Electric Stimulus Pattern in Cochlear Implant Using a Computer Model (신경모델링을 이용한 인공와우 전기자극 패턴 연구)

  • Yang, Hyejin;Woo, Jihwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.249-255
    • /
    • 2012
  • A cochlear implant system uses charge-balanced biphasic pulses that are known to reduce tissue damage than monophasic pulses. In this study, we investigated effect of pulse pattern on neural responses using a computer model, based on the Hodgkin-Huxley equation. Electric pulse phase, pulse duration, and phase gap have been systematically varied to characterize auditory nerve responses. The results show that neural responses, dynamic range and threshold are represented as a function of stimulus patterns and duration. The results could greatly extend to develop more efficient cochlear implant stimulation.

Effects of Electro-acupuncture's Stimulated Frequency, Intensity, Duration at ST36 on the Small Intestine Motility in Rats (족삼리(足三里) 전침(電鍼)의 주파수(周波數), 강도(强度) 및 자극(刺戟) 시간(時間)이 소장(小腸) 수송능(輸送能)에 미치는 영향(影響))

  • Kim, Yong-Jeong;Park, Sang-Moo;Cha, Suk;Yun, Jeong-Ahn;Yu, Yun-Jo;Kang, Byung-Ki;Kim, Kang-San
    • Journal of Acupuncture Research
    • /
    • v.23 no.4
    • /
    • pp.175-185
    • /
    • 2006
  • Objectives : This study was designed to investigate effects of electro-acupuncture's stimulated frequency, intensity, duration at 5736 on tile Small Intestine Motility in Rats. Methods The motor activity of small intestine in rats was evaluated by intestinal transportation rate. Changes in tile motility of ileum in vivo was measured at 10 minutes after electro-acupuncture. Various kinds of stimulus-frequency were used in this experiment: 2 Hz, 50 Hz, 100 Hz, 2 Hz-4 trains, 8 Hz groups treated with EA of the condition in S mA, 1 ms pulse duration, 30 minutes stimulated duration. Three different stimulus-intensity were used: 1, 5, 10 mA groups treated with EA of the condition in 2 Hz, 1 ms pulse duration, 30 minutes stimulated duration. Six different stimulus-duration were used: 10, 20, 30, 40, 50, 60 minutes groups treated with EA of the condition in 2 Hz, 5 mA, 1 ms pulse duration. Results : 2 and 100 Hz groups significantly increased the small intestine motility, but 50 Hz group did not induce a significant change. Besides, small intestine motility was significantly increased only in 5 mA intensity (5 times twitch). futhermore, at least 20 minutes EA treatment was necessary to increase the small intestine motility. Conclusion : Those basic data form this study can be applied to established the effective treatment of EA for gastrointestinal diseases in the clinical field.

  • PDF

ELECTROPHYSIOLOGICAL CHARACTERISTICS OF GABAERGIC INHIBITION IN THE HIPPOCAMPAL CA1 OF THE RAT IN VIVO (생체내 흰쥐 해마 CA1 세포에서 가바성 억제에 대한 전기생리학 특성)

  • Choi, Byung-Ju;Cho, Jin-Hwa;Kim, Young-Jin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.1
    • /
    • pp.7-14
    • /
    • 2000
  • Inhibitory cells are critically involved in shaping normal hippocampal function and are thought to be important elements in the development of hippocampal pathologies. The present study was carried out in hippocampal CA1 area in vivo to compare with hippocampal slice studies. Intracellular and extracellular recordings with or without bicuculline electrodes were obtained in the intact brain of anesthetized rats, and cells were intracellularty labelled with neurobiotin. Electrical stimulation of fimbria-fornix resulted in an initial short-latency population spike. In the presence of $10{\mu}M$ bicuculline, orthodromic stimulation resulted in bursts of population spikes. The amplitude of population spikes in the CA1 region increased with stimulus intensity, as did the number of population spikes when the field recording electrode contained $10{\mu}M$ bicuculline. We measured the level of excitability in the CA1 area, using a paired-pulse stimulus paradigm to evoke population spikes. Population spikes showed strong paired-pulse inhibition at short interstimulus intervals. Burst afterdischarges up to 400 ms were observed after paired-pulse stimulus. These result suggest that hippocampal CA1 inhibitory interneurons can affect the excitability of pyramidal neurons that can not be appreciated in conventional in vitro preparation.

  • PDF

A Plastic Cortex Stimulator for Stroke Recovery Using ZigBee technology (ZigBee 무선통신 기술을 이용한 뇌졸중 환자 치료용 뇌자극기 개발)

  • Kim, G.H.;Yang, Y.S.;Lee, S.M.;Kim, N.G.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.373-375
    • /
    • 2005
  • The purpose of this paper is to develop the Plastic Cortex Stimulator(PCS) for stroke patients using ZigBee technology. The PCS consists of an implantable neuro-stimulator and a user controller, The neuro-stimulator has the stimulus circuit which is the H-bridge circuit to generate a bipolar pulse. The bipolar pulse is known to be effective for stroke recovery. The user controller sends several wave-shape parameters (amplitude, pulse width, cycle, etc.) to the neuro-stimulator for variable stimulation using ZigBee technology. The CC2420 and atmega128L was used to implement ZigBee protocol stack. The wireless control of PCS based on ZigBee can help the tele-rehabilitation of the stroke patients. The most effective pulse shape parameters are being investigated through animal experiments. The bio-compatibility and user-friendly interface are supposed to be handled in further study.

  • PDF

An Implementation of a GPIAS Measurement System for Animal Tinnitus Detection and Study on Effect of Starting Point of Stimulus Background Sound on Startle Response (동물 이명 검사용 GPIAS 측정 장치 구현과 이를 통한 자극 배경음의 시작 시점이 놀람 반응에 주는 영향)

  • Jeon, Poram;Jung, Jae Yun;Lee, Seung-Ha;Park, Ilyong
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.410-414
    • /
    • 2013
  • As one of the effective methods for researching the objective tinnitus detection, the GPIAS (Gap Pre-pulse Inhibition of Acoustic Startle) measurement has been used to verify the existence of animal tinnitus objectively. The level and pattern of the background sound presented prior to a startle pulse are closely related with the GPIAS results. But the effect of the starting point of the background sound on animal startle responses has not been reported yet. In this paper, we present the implementation of a GPIAS measurement system based on an unconstrained enclosure to avoid animals' excessive constraint stress and deal with the animals' growth. After the performance of our implemented system has been tested through the animal experiment using 4 SD-rats, the effect of starting point of stimulus background sound on the startle response has been studied by the use of our implemented system. Through the results, it is verified that our system can measure the inhibition of animal startle responses due the gap pre-pulse for GPIAS calculation and the background sound starting point does not significantly effect on the startle response and the GPIAS values if the background sound continues for more than 300msec before a gap pre-pulse is presented.

Effect of Taking Meal on Pulse Diagnosis in Healthy Subjects (식사가 정상인의 맥에 미치는 영향 분석)

  • Lee, Yu-Jung;Lee, Jeon;Lee, Hae-Jung;Choi, Eun-Ji;Kim, Jong-Yeol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.6
    • /
    • pp.1670-1675
    • /
    • 2007
  • The pulse diagnosis studies reported to date has mainly been performed to clinically reveal the pulse wave characteristics according to the specific diseases, whereas no attempts have been made to study the effects on the pulse wave characteristics of the daily activities such as taking meals, exercise, and sleep, etc. This work reports the effect of feeding stimulus on the healthy subjects on the pulse wave pattern which has quantitatively been analyzed using the objective model for the pulse diagnosis in oriental medicine. The pulse waves right before/after the meal and 30 minutes after the meal were measured using the pulse analyzing equipment (3D-Mac, Daeyo Medi, Korea) and at the same time oriental medicine doctors' diagnoses were given. The pulse parameters obtained from the equipment and clinical records on the subjects were statistically processed and the variables showing statistically significant differences were analyzed. The results indicate that the pulse pressure, the pulse rate, and the respiratory rate increase while the blood pressure decreases after the meal. For the floating/sinking and the deficient/excess coefficients characterizing the pulse states described in the oriental medicine, the floating/sinking coefficients were observed to decrease whereas the deficiency/excess coefficients increase after the meal. The results indicates that besides the standard bio-indicators like blood pressure and respiratory rate, etc., the pulse wave characterization in terms of the pulse classifications in the oriental medicine using the floating/sinking, deficient/excess pulse states provide an important piece of biomedical information.