• Title/Summary/Keyword: Stimulation Current

Search Result 485, Processing Time 0.026 seconds

Transcranial Direct Current Stimulation-Psychiatric Application and Its Current Status (경두개 직류 자극-정신과적 활용과 현황)

  • Kim, Pyungkyu;Kim, Dohyoung
    • Korean Journal of Biological Psychiatry
    • /
    • v.24 no.4
    • /
    • pp.175-187
    • /
    • 2017
  • Transcranial direct current stimulation (TDCS) is a clinically safe and effective method of delivering weak electric current to modulate cortical activities. And based on the cumulating scientific evidences, the method is recommended to treat major depressive disorder (MDD) and other psychiatric disorders. In this paper, we review the development of TDCS in the rising field of neuromodulation. Then with suggested biochemical and physical mechanism of TDCS, we summarize the reported cases of using TDCS to alleviate major neuropsychiatric disorders. And, in particular, the treatment of MDD is highlighted as an illustrative example of using TDCS. We discuss here the therapeutic potentials of this method in psychiatry. And in closing remarks, we evaluate the current technical limitations and suggest the future directions of this method in both the clinical and research aspects.

Keratinocyte Proliferation in Aged Rat Skin by High Voltage Pulsed Current Stimulation

  • Lee Jae-Hyoung;Lee Jong-Sook;Kil Eyn-Young
    • Biomedical Science Letters
    • /
    • v.10 no.4
    • /
    • pp.361-366
    • /
    • 2004
  • The purpose of this study was to determine the effect of high voltage pulsed current (HVPC) stimulation on proliferative activities of basal keratinocytes by measured nucleolar organizer region (NOR) expression and thickness of spinous layer in aged rat skin. Fifty-one weeks old twelve male Sprague-Dawley rats (300∼350g) were divided into control and HVPC stimulation groups. Each animal's hair on the back were removed. The HVPC stimulation group received an negative monophasic twin peak pulsed current stimulation with 50 V, while the control group was given the same treatment without electricity. The rats were sacrificed after 3 weeks. The biopsy specimens were fixed in formalin, embedded in paraffin and stained with hematoxyline-eosin and silver nitrate. The thickness of basal to granular layer of the epidennis were measured using a light microscope and computerized image analysis system. The number of argyrophilic nucleolar organizer region (AgNOR) were counted using a light microscope and computerized image analysis system and calculated as the mean number of AgNOR per nucleus in the basal keratinocyte. By using a Student's t-test, an increase in the thickness of basal-spinous layer (P<0.001) of epidermis can be observed in HVPC stimulation rats as compared with the control rats, whereas the thickness of the granular layer is not affected. A Student's t-test showed a significantly higher mean NOR number per nucleus of the basal keratinocyte in the HVPC stimulation rats than control rats (P<0.001). There was significantly positive correlation between the NOR number and the thickness of basal-spinous layer (r=0.80, P<0.05). These results suggest that the HVPC stimulation may increase the thickness of spinous layer in the epidennis due to increased proliferative activities of basal keratinocytes in epidennis in aged rat skin.

  • PDF

The Effect of Microcurrent Stimulation on Immediately Early Gene in Pain Induced Model (실험적 통증유발 모델에서 조기발현 유전자에 대한 미세전류자극의 효과)

  • Kim Gye-Yeop;Kim Tae-Youl;Oh Myung-Hwa;Kim Sun-Eun;Cheong Mee-Sun;Suh Young-Sook
    • The Journal of Korean Physical Therapy
    • /
    • v.16 no.3
    • /
    • pp.9-21
    • /
    • 2004
  • The purpose of study is that we will observe the change of c-fos with the immunohistochemistry method and then we will study the effect of micro current stimulation following the frequency after inducing pain to rats with capsaicin. Rat were classified to SD and they have growed for 8 weeks. We classify to four groups, ordinal group is used in experiment I, the group which we induce pain is used in experiment II, the application group which we induce pain and then the high frequency micro current stimulation is used in experiment III, the application group which we induce pain and then the low frequency micro current stimulation is used in experiment IV, we get the following result. Compare with experiment II, experiment III, and experiment IV from acute pain modal in the immunohistochemistry experiment which has c-fos protein as an antigen, c-fos immunoreactive positive neurons significantly after induced pain for two hours(p<0.001). According to these results, from rats induced pain, micro current stimulation effect to reducing pain, but following frequency micro current stimulation theraphy isn't different from immunoreactive c-fos

  • PDF

Changes in Poly ADP Ribose Polymerase Immune Response Cells of Cerebral Ischaemia Induced Rat by Transcranial Magnetic Stimulation of Alternating Current Approach

  • Koo, Hyun-Mo;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.357-364
    • /
    • 2014
  • This study examined effect of a transcranial magnetic stimulation device with a commercial-frequency approach on the neuronal cell death caused ischemia. For a simple transcranial magnetic stimulation device, the experiment was conducted on an ischemia induced rat by transcranial magnetic stimulation of a commercial-frequency approach, controlling the firing angle using a Triac power device. The transcranial magnetic stimulation device was controlled at a voltage of 220 V 60 Hz and the trigger of the Triac gate was varied from $45^{\circ}$ up to $135^{\circ}$. Cerebral ischemia was caused by ligating the common carotid artery of male SD rats and reperfusion was performed again to blood after 5 minutes. Protein Expression was examined by Western blotting and the immune response cells reacting to the antibodies of Poly ADP ribose polymerase in the cerebral nerve cells. As a result, for the immune response cells of Poly ADP ribose polymerase related to necrosis, the transcranial magnetic stimulation device suppressed necrosis and had a protective effect on nerve cells. The effect was greatest within 12 hours after ischemia. Therefore, it is believed that in the case of brain damage caused by ischemia, the function of brain cells can be restored and the impairment can be improved by the application of transcranial magnetic stimulation.

Electrical properties and deposited films of Arachidic Acid (Arachidic Acid의 누독막(累讀膜)과 전기적특성(電氣的特性))

  • Cho, S.Y.;Chun, D.K.;Lee, K.S.;Lee, W.S.;Chung, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.215-217
    • /
    • 1996
  • We have examined the electrical properties of arachidic acid Langmuir(L)films by using a displacement-current-measuring technique with pressure stimulation, displacement current peak appeared at a area per molecule around $90{\AA}^2$, possibly due to the orientational change in hydrophobic part of arachidic acid molecules. The displacement current is the transient current, it is generated when charged particles existing in single monolayers are displaced with the external stimulation. In this report, we mainly describe the displacement current generation from arichidic acid monolayers with pressure stimulation.

  • PDF

Clinical Test for Evaluation of Effectiveness of the Micro-current Stimulation in Facial Skin Care (미세전류 자극이 얼굴 피부개선에 미치는 영향에 관한 임상시험 연구)

  • Cho, Seungkwan;Kim, Seong Guk;Kim, Yong-Min;Park, Se-Keun;Lee, Chi Hwan;Kim, Hansung
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.195-207
    • /
    • 2016
  • This study examined the effectiveness of micro-current stimulation (MCS) to improve the facial skin qualities by performing clinical test. The MCS is generally known that provide healing response in the damaged tissue and pain relief through activating the adenosine triphosphate (ATP) and protein synthesis. In here, we can hypothesize that the improvement of facial skin qualities may occur due to MCS, since the induction of micro-current from outside may enhance the cellular activity according to ATP activation. From the clinical test, our results showed that a variety of evaluating categories, which is able to assess the skin qualities, significantly enhanced due to stimulation of micro-current after 7 and 14 days. Therefore, we can estimate that MCS in human facial skin may be effective to improve the skin qualities.

Neuromodulation for Insomnia Management (불면증 치료법으로서의 뉴로모듈레이션)

  • Yoon, Ho-Kyoung
    • Sleep Medicine and Psychophysiology
    • /
    • v.28 no.1
    • /
    • pp.2-5
    • /
    • 2021
  • Hyperarousal or increased brain excitability is thought to play a key role in the pathophysiology of insomnia. Neuromodulation techniques are emergent complementary therapies for insomnia and can improve sleep by modulating cortical excitability. A growing body of literature support the idea that neuromodulation can be effective in improving sleep or treating insomnia. Recent evidence has revealed that neuromodulation methods can improve objective and subjective sleep measures in individuals with insomnia, although effects vary according to protocol. Different mechanisms of action might explain the relative efficacy of neuromodulation techniques on sleep outcomes. Further research testing different stimulation parameters, replicating existing protocols, and adding standardized sleep-related outcomes could provide further evidence on the clinical utility of neuromodulation techniques.

The Effect of Current Perception Threshold and Pain Threshold through Transcutaneous Electrical Nerve Stimulation and Silver Spike Point Therapy (TENS와 SSP가 전류지각역치 및 통증역치에 미치는 효과)

  • Yun, Mi-Jung;Lee, Wan-Hee
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.2
    • /
    • pp.53-59
    • /
    • 2011
  • Purpose: This study was designed to compare the effects of transcutaneous electrical nerve stimulation (TENS) and silver spike point (SSP) therapy on current perception threshold (CPT) and mechanical pain threshold (MPT). Methods: Forty-five healthy adult male and female subjects were studied. Fourteen of them were males and twenty-one were females. Subject were randomly assigned to receive; (1) TENS (80/120 Hz alternating frequency), (2) SSP (3 Hz), or (3) no treatment (control group). Electric stimulation was applied over LI4 and LI11 on acupuncture points of the left forearm for 30 minutes. CPT and MPT were recorded before and after electrical stimulation. The data were analyzed using linear mixed models, with group treated as a between subject factor and time a within-subject factor. Results: At 30 minutes after cessation of electrical stimulation the CPT of C fibers and A${\delta}$fibers was reduced in the TENS group that of C fibers was reduced in the SSP group (p<0.05). After cessation of electrical stimulation, the MPT of C fibers and A${\delta}$fibers increased in the TENS group, and that of A${\delta}$fibers increased in the SSP group (p<0.05). Conclusion: After TENS and SSP stimulation, MPT of C fibers and A${\delta}$fibers were selectively increased. In particular, the TENS group showed increases in both C and A${\delta}$fibers, while the SSP group showed increases only in A${\delta}$fibers.

Cortical Activation by Transcranial Direct Current Stimulation and Functional Electrical Stimulation in Normal Subjects: 2 Case Studies (정상 성인에서 경두개 직류 전류자극과 기능적 전기자극에 의한 대뇌피질의 활성화: 사례연구)

  • Kwon, Yong-Hyun;Kwon, Jung-Won;Park, Sang-Young;Jang, Sung-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.1
    • /
    • pp.77-82
    • /
    • 2011
  • Purpose: Recently, many studies have demonstrated that application of external stimulation can modulate cortical excitability of the human brain. We attempted to observe cortical excitability using functional magnetic resonance imaging (fMRI) during the application of transcranial direct current stimulation (tDCS) or functional electrical stimulation (FES). Methods: We recruited two healthy subjects without a history of neurological or psychiatric problems. fMRI scanning was done during? each constant anodal tDCS and FES session, and each session was repeated three times. The tDCS session consisted of three successive phases (resting phase: 60sec dummy cycle: 10sec tDCS phase: 60sec). The FES session involved stimulation of wrist extensor muscles over two successive phase (resting phase: 15sec FES phase: 15sec). Results: The average map of the tDCS and FES analyses showed that the primary sensory-motor cortex area was activated in all subjects. Conclusion: Our findings show that cortical activation can be induced by constant anodal tDCS and FES. They suggest that the above stimuli have the potential for facilitating brain plasticity and modulating neural excitability if applied as specific therapeutic interventions for brain injured patients.

Effects of Silver Spike Point Electrical Stimulation on Glomerular Filtration Rate in Volunteer (은침점전기자극의 인체적용이 신사구체여과율(Glomerular Filtration Rate)에 미치는 효과)

  • Chon, Ki-Young;Kim, Soon-Hee;Min, Kyung-Ok;Choi, Young-Duk;Lee, Joon-Hee;Kim, Jung-Hwan
    • Journal of Korean Physical Therapy Science
    • /
    • v.11 no.1
    • /
    • pp.28-35
    • /
    • 2004
  • The purpose of the present study was to investigate the effectiveness of silver spike point (SSP) low frequency electrical stimulation on glomerular filtration rate (GFR), specifically, such as diuretic action in 24 hour urine and in plasma analysis from normal volunteer. The current of 1 Hz continue type (CT) of SSP low frequency electrical stimulation significantly decreased in plasma creatine from normal volunteer. However, the urine creatinine clearance (Ccr) was significantly increased by SSP low frequency electrical stimulation in normal volunteer. These results suggest that the SSP low frequency electrical stimulation, especially current of 1 Hz continue type, significantly regulates urine creatinine clearance and glomerular filtration rate from normal volunteer. Therefore, the SSP low frequency electrical stimulation is a good regulator through a diuretic action of hypertension.

  • PDF