• 제목/요약/키워드: Still-motion method

검색결과 145건 처리시간 0.029초

Modal tracking of seismically-excited buildings using stochastic system identification

  • Chang, Chia-Ming;Chou, Jau-Yu
    • Smart Structures and Systems
    • /
    • 제26권4호
    • /
    • pp.419-433
    • /
    • 2020
  • Investigation of structural integrity has been a critical issue in the field of civil engineering for years. Visual inspection is one of the most available methods to explore deteriorative components in structures. Still, this method is not applicable to invisible damage of structures. Alternatively, system identification methods are capable of tracking modal properties of structures over time. The deviation of these dynamic properties can serve as indicators to access structural integrity. In this study, a modal tracking technique using frequency-domain system identification from seismic responses of structures is proposed. The method first segments the measured signals into overlapped sequential portions and then establishes multiple Hankel matrices. Each Hankel matrix is then converted to the frequency domain, and a temporal-average frequency-domain Hankel matrix can be calculated. This study also proposes the frequency band selection that can divide the frequency-domain Hankel matrix into several portions in accordance with referenced natural frequencies. Once these referenced natural frequencies are unavailable, the first few right singular vectors by the singular value decomposition can offer these references. Finally, the frequency-domain stochastic subspace identification tracks the natural frequencies and mode shapes of structures through quick stabilization diagrams. To evaluate performance of the proposed method, a numerical study is carried out. Moreover, the long-term monitoring strong motion records at a specific site are exploited to assess the tracking performance. As seen in results, the proposed method is capable of tracking modal properties through seismic responses of structures.

Vibration Control of an Axially Moving Belt by a Nonlinear Boundary Control

  • Park, Ji-Yun;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.38.1-38
    • /
    • 2001
  • In this paper, the vibration suppression problem of an axially moving power transmission belt is investigated. The equations of motion of the moving belt is first derived by using Hamilton´s principle for systems with changing mass. The total mechanical energy of the belt system is considered as a Lyapunov function candidate. Using the Lyapunov second method, a nonlinear boundary control law that guarantees the uniform asymptotic stability is derived. The control performance with the proposed control law is simulated. It is shown that a boundary control can still achieve the uniform stabilization for belt systems.

  • PDF

캐릭터 애니메이션 데이터의 H-Anim 기반 정의 (H-Anim-based Definition of Character Animation Data)

  • 이재욱;이명원
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권10호
    • /
    • pp.796-800
    • /
    • 2009
  • 컴퓨터 그래픽스 기술의 발전으로 3D 인간 형상 표현과 애니메이션 생성을 위한 소프트웨어 도구들이 많이 개발되었고 현재 많이 활성화되어 있다. 그러나, 이러한 도구들로 제작한 인체 모델들간의 공통 데이터 형식의 부재로 인체 모델과 모션의 데이터 교환에는 아직 어려움이 따른다. 이와 같은 문제를 해결하기 위해서 3D 인간 형상을 표현하는 규약이 ISO/IEC JTC1 SC24와 Web3D Consortium에서 공동으로 개발된 H-Anim이다. H-Anim에서는 인체 형상 구조에 대한 형식은 정의하였으나 모션 데이터에 대한 형식은 아직 포함하지 않고 있다. 본 연구는 인체의 모델 데이터 뿐 아니라 모션의 데이터 형식을 정의하고, 서로 다른 프로그래밍 환경에서도 모델링 데이터와 모션 데이터를 서로 독립적으로 사용할 수 있도록 하는, 호환성 있는 인체 애니메이션 실현을 목적으로 한다. 본 연구에서는 H-Anim 캐릭터 모델에 키프레임 애니메이션 파라미터를 입력할 수 있는 구문을 정의하고 이를 구현한 결과를 보여준다. 이 때 애니메이션 파라미터 생성을 위해 임의의 일반 그래픽스 도구에서 독립적으로 제작한 캐릭터 모델을 H-Anim 캐릭터로 변환하고 새로운 애니메이션 생성을 위한 파라미터 설정 방법에 대해서도 설명한다.

Advanced Frame Rate Conversion without Halo and judder effect for 120Hz LCD Displays

  • Lim, Kyoung-Won;Kim, Han-Soo;Noh, Hyun-Chul;Shin, Hyun-Chul;Jung, Woo-Chul;Koo, Gun-Jae;Park, Ryuk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1397-1400
    • /
    • 2008
  • Frame rate conversion became key technology due to recent advances in LCD panel refresh rates. Although many FRC algorithms have been developed and applied for LCD TV sets, they still suffer from well-known halo artifact. This paper discusses about the artifacts and method to handle them.

  • PDF

선형 압축기의 동적 거동 예측 Simulation Tool 개발 (Development of Simulation Tool for Dynamic Behavior of a Linear Compressor)

  • 전수홍;정의봉;이효재;김당주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권4호
    • /
    • pp.476-483
    • /
    • 2009
  • A linear compressor used in a refrigerator has higher energy efficiency than a reciprocating compressor, but its vibration level is still severe than others. The vibration level of linear compressor at the frequency of 60Hz is dominant since it is the exciting frequency of a motor. In this paper, a simulation tool to predict the shell vibration of the linear compressor was developed. The shell and body parts in a compressor were assumed to be 3-dimensional rigid body having both translational and rotational motion, while the reciprocating piston part has only 1-dimensional translational motion. The flexible loop-pipe was modeled by in-house code of finite element method. To verify the developed tool, five cases of different loop-pipe shapes were examined experimentally. The results by the developed tool showed good agreements with those by experiments.

인체동작 모니터링 위한 광섬유 기반 의류 소매형 동작센서 연구 (A study on the sleeve-shaped platform of POF-based joint angle sensor for arm movement-monitoring clothing)

  • 강다혜;이영재;이정환;이주현
    • 감성과학
    • /
    • 제14권2호
    • /
    • pp.221-226
    • /
    • 2011
  • 인체의 동작 센싱 방법에 대한 연구가 다양하게 진행되어 왔으나, 기존의 동작 센싱 방식에는 많은 한계점들이 있다. 기존의 동작 센싱 방식의 한계점을 보완하기 위한 일환의 노력으로, 이 논문에서는 비구속적인 동작 센싱이 가능한 광섬유 기반 의류 소매형 동작센서를 탐색적으로 연구하는데 목표를 두었다. 이 논문에서는 광섬유 기반의 의류 소매형 동작 센서를 고안하고, 이를 통하여 일상생활 중에 다양한 동작을 센싱하는 것이 가능한가에 대하여 탐색적 연구를 수행하였다. 또한 본 연구의 범위는 광섬유 기반 동작센서의 가능성 여부와 주요 요건을 탐색하는 것이며, 소매 패턴과 봉제 방식의 특성, 착용자의 체형 특성이 미친 영향은 연구 범위에서 제외되었다. 이러한 방식으로 의복에 적용 가능하도록 고안된 광섬유 기반 의류 소매형 동작센서는, 기존의 동작 센싱 시스템에 비하여 더욱 미세한 인체 동작 측정이 가능하며 시간 공간의 제약 없이 저 비용으로 인체 동작 측정이 가능하다는 장점을 갖는다.

  • PDF

FSI를 활용한 2차원 곤충날개 주위 유동장 해석 (NUMERICAL STUDY ON THE UNSTEADY FLOW PHYSICS OF INSTECTS' FLAPPING FLIGHT USING FLUID-STRUCTURE INTERACTION)

  • 이근배;김진호;김종암
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.151-158
    • /
    • 2009
  • To implement the insects' flapping flight for developing flapping MAVs(micro air vehicles), the unsteady flow characteristics of the insects' forward flight is investigated. In this paper, two-dimensional FSI(Fluid-Structure Interaction) simulations are conducted to examine realistic flow features of insects' flapping flight and to examine the flexibility effects of the insect's wing. The unsteady incompressible Navier-Stokes equations with an artificial compressibility method are implemented as the fluid module while the dynamic finite element equations using a direct integration method are employed as the solid module. In order to exchange physical information to each module, the common refinement method is employed as the data transfer method. Also, a simple and efficient dynamic grid deformation technique based on Delaunay graph mapping is used to deform computational grids. Compared to the earlier researches of two-dimensional rigid wing simulations, key physical phenomena and flow patterns such as vortex pairing and vortex staying can still be observed. For example, lift is mainly generated during downstroke motion by high effective angle of attack caused by translation and lagging motion. A large amount of thrust is generated abruptly at the end of upstroke motion. However, the quantitative aspect of flow field is somewhat different. A flexible wing generates more thrust but less lift than a rigid wing. This is because the net force acting on wing surface is split into two directions due to structural flexibility. As a consequence, thrust and propulsive efficiency was enhanced considerably compared to a rigid wing. From these numerical simulations, it is seen that the wing flexibility yields a significant impact on aerodynamic characteristics.

  • PDF

자가발전활용을 위한 마찰전기 나노발전소자의 제작 (Fabrication of triboelectric nanogenerator for self-sufficient power source application)

  • 신소윤;김상재;발라스브라마니안 사라판구말
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.589-590
    • /
    • 2013
  • The fast development of electronic devices towards wireless, portable and multi-functionality desperately needs the self-powered and low maintenance power sources. The possibility to coupling the nanogenerator to wearable and portable electronic device facilitates the self powered device with independent and self sustained power source. Nanogenerator has ability to convert the low frequency mechanical vibration to electrical energy which is utilized to drive the electronic device [1]. The self powered power source has the ability to generate the power from environment and human activity has attracted much interest because of place and time independent. The human body motion based energy harvesting has created huge impact for future self powered electronics device applications. The power generated from the human body motion is enough to operate the future electronic devices. The energy harvesting from human body motion based on triboelectric effect has simple, cost-effective method [2, 3] and meet the required power density of devices. However, its output is still insufficient to driving electronic devices in continues manner so new technology and new device architecture required to meet required power. In the present work, we have fabricated the triboelectric nanogenerator using PDMS polymer. We have studied detail about the power output of the device with respect to different polymer thickness and varied separation distance.

  • PDF

3 자유도 물고기 로봇의 동적해석 및 운동파라미터 최적화에 관한 연구 (A Study on Optimization of Motion Parameters and Dynamic Analysis for 3-D.O.F Fish Robot)

  • 김형석;;이병룡;유호영
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1029-1037
    • /
    • 2009
  • Recently, the technologies of mobile robots have been growing rapidly in the fields such as cleaning robot, explosive ordnance disposal robot, patrol robot, etc. However, the researches about the autonomous underwater robots have not been done so much, and they still remain at the low level of technology. This paper describes a model of 3-joint (4 links) fish robot type. Then we calculate the dynamic motion equation of this fish robot and use Singular Value Decomposition (SVD) method to reduce the divergence of fish robot's motion when it operates in the underwater environment. And also, we analysis response characteristic of fish robot according to the parameters of input torque function and compare characteristic of fish robot with 3 joint and fish robot with 2 joint. Next, fish robot's maximum velocity is optimized by using the combination of Hill Climbing Algorithm (HCA) and Genetic Algorithm (GA). HCA is used to generate the good initial population for GA and then use GA is used to find the optimal parameters set that give maximum propulsion power in order to make fish robot swim at the fastest velocity.

An Adaptive Occluded Region Detection and Interpolation for Robust Frame Rate Up-Conversion

  • Kim, Jin-Soo;Kim, Jae-Gon
    • Journal of information and communication convergence engineering
    • /
    • 제9권2호
    • /
    • pp.201-206
    • /
    • 2011
  • FRUC (Frame Rate Up-Conversion) technique needs an effective frame interpolation algorithm using motion information between adjacent neighboring frames. In order to have good visual qualities in the interpolated frames, it is necessary to develop an effective detection and interpolation algorithms for occluded regions. For this aim, this paper proposes an effective occluded region detection algorithm through the adaptive forward and backward motion searches and also by introducing the minimum value of normalized cross-correlation coefficient (NCCC). That is, the proposed scheme looks for the location with the minimum sum of absolute differences (SAD) and this value is compared to that of the location with the maximum value of NCCC based on the statistics of those relations. And, these results are compared with the size of motion vector and then the proposed algorithm decides whether the given block is the occluded region or not. Furthermore, once the occluded regions are classified, then this paper proposes an adaptive interpolation algorithm for occluded regions, which still exist in the merged frame, by using the neighboring pixel information and the available data in the occluded block. Computer simulations show that the proposed algorithm can effectively classify the occluded region, compared to the conventional SAD-based method and the performance of the proposed interpolation algorithm has better PSNR than the conventional algorithms.