• Title/Summary/Keyword: Still-motion method

Search Result 146, Processing Time 0.022 seconds

Surgical Treatment of Olecranon Fractures

  • Koh, Kyoung-Hwan;Oh, Hyoung-Keun
    • Clinics in Shoulder and Elbow
    • /
    • v.20 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • Since the olecranon fractures are caused by relatively low-energy injuries, such as a fall from standing height, they are usually found without comminution. Less commonly they can be developed by high-energy injuries and have severe concomitant comminution or injuries to surrounding structures of the elbow. Because the fracture by nature is intra-articular with the exception of some avulsion-type fracture, a majority of olecranon fractures are usually indicated for surgical treatment. Even if there is minimal displacement, surgical treatment is recommended because there is a possibility of further displacement by the traction force of triceps tendon. The most common type of olecranon fracture is displaced, simple non-comminuted fracture (that is, Mayo type IIA fractures). Although tension band wiring was the most widespread treatment method for these fractures previously, there is some trends toward fixation using locking plates. Primary goal of the surgery is to restore a congruent joint and extensor mechanisms by accurate reduction and stable fixation so that range of motion exercises can be performed. The literature has shown that good clinical outcomes are achieved irrespective of surgical fixation technique. However, since the soft tissue envelope around the elbow is poor and the implants are located at the subcutaneous layer, implant irritation is still the most common complication associated with surgical treatment.

Context-aware Video Surveillance System

  • An, Tae-Ki;Kim, Moon-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.115-123
    • /
    • 2012
  • A video analysis system used to detect events in video streams generally has several processes, including object detection, object trajectories analysis, and recognition of the trajectories by comparison with an a priori trained model. However, these processes do not work well in a complex environment that has many occlusions, mirror effects, and/or shadow effects. We propose a new approach to a context-aware video surveillance system to detect predefined contexts in video streams. The proposed system consists of two modules: a feature extractor and a context recognizer. The feature extractor calculates the moving energy that represents the amount of moving objects in a video stream and the stationary energy that represents the amount of still objects in a video stream. We represent situations and events as motion changes and stationary energy in video streams. The context recognizer determines whether predefined contexts are included in video streams using the extracted moving and stationary energies from a feature extractor. To train each context model and recognize predefined contexts in video streams, we propose and use a new ensemble classifier based on the AdaBoost algorithm, DAdaBoost, which is one of the most famous ensemble classifier algorithms. Our proposed approach is expected to be a robust method in more complex environments that have a mirror effect and/or a shadow effect.

Three-Dimensional Trajectory of a Fluid Particle in Air with Wind Effects and Air Resistance (공기 저항과 바람의 영향을 고려한 대기에서의 유체입자의 3차원 궤적)

  • 이동렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.797-808
    • /
    • 2001
  • Three-dimensional trajectory of fluid particle is simulated by a particle motion, which is able to examine the influences of changes in the several parameters. To calculate the trajectory of a particle, the Runge-Kutta method was utilized. The use of a projectile of particles for the trajectory of liquid jet has been shown to be useful to estimate the influence of different operating parameters such as best particle diameter, density of liquid body, initial take-off velocity, wind velocity, cross wind velocity, take-off angle, and base angle for a released flow from the nozzle. The results give the trajectories of various types of particle of body and at different elevations, base angles, wind velocities and densities of liquid body. The trajectories in a vacuum show that air resistances decreases both the distance and the maximum height of a projectile, and also explain that the termination time is also reduced in air. In addition, the maximum distance in the x direction was obtained with take-off angles from 30 degrees to 45 degrees in still air and the projectile of particles was highly effected by wind and cross wind. Clearly, a particle has to be so positioned as to take the optimum possible advantage of the wind if the maximum distances is requested. The wind astern increased the maximum distances of x direction compared with the wind ahead. Finally, it is possible to optimize the design of pump by using these results.

  • PDF

Experimental Study of Surge Motion of a Floater using Flapping Foils in Waves (파도에서 플래핑 포일을 적용한 부유체의 서지 운동에 관한 실험적 연구)

  • Sim, Woo-lim;Rupesh, Kumar;Yu, Youngjae;Shin, Hyunkyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.3
    • /
    • pp.211-216
    • /
    • 2019
  • In order to utilize the marine environment in various fields such as renewable energy and offshore plant, it is necessary to utilize the far and deep ocean. However, there is still a limit to overcome and utilize the extreme deep-sea environment. Currently, the mooring system, which is the representative position control method of floating structure, has a structural and economic limit to expand the installation range to extreme deep-sea environment. Research has been conducted to utilize wave energy by developing floater using flapping foil as an alternative for station keeping in the deep sea by University of Ulsan. Based on the research, a model test was conducted for application to actual structures. In this study, we investigate how the floating body with passive flapping foils move in regular waves with different periods and study the condition of the model that can maintain its position within a certain range by overcoming the movement.

Microscopic damping mechanism of micro-porous metal films

  • Du, Guangyu;Tan, Zhen;Li, Zhuolong;Liu, Kun;Lin, Zeng;Ba, Yaoshuai;Ba, Dechun
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1388-1392
    • /
    • 2018
  • Metal thin films are used widely to solve the vibration problem. However, damping mechanism is still not clear, which limits the further improvement of the damping properties for film and the development of multi-functional damping coating. In this paper, Damping microscopic mechanism of porous metal films was investigated at both macroscopically and microscopically mixed levels. Molecular dynamics simulation method was used to model and simulate the loading-unloading numerical experiment on the micro-pore and vacancy model to get the stress-strain curve and the microstructure diagram of different defects. And damping factor was calculated by the stress-strain curve. The results show that dislocations and new vacancies appear in the micro-pores when metal film is stretched. The energetic consumption from the motion of dislocation is the main reason for the damping properties of materials. Micro-mechanism of damping properties is discussed with the results of in-situ experiment.

Prediction of Resistance and Planing Attitude for Prismatic Planing Hull using OpenFOAM (OpenFOAM을 이용한 주형체 활주선의 저항 및 항주자세 추정)

  • Shi, XiangYu;Zhang, Yang;Yum, Deuk-joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.313-321
    • /
    • 2019
  • The prediction of the hydrodynamic performance of a planing hull vessel is an important and challenging topic for computational fluid dynamic (CFD) applications to naval hydrodynamics. In this paper, the resistance and planing attitude analysis for a Fridsma hull, which is a prismatic planing hull, in still water are numerically studied using OpenFOAM. OpenFOAM is an open source code package based on C++ libraries and the finite volume method (FVM) for the discretization of the RANS equation. The volume of fluid method (VOF) is used to capture the water-air interface and the SST ${\kappa}-{\omega}$ model is used for the turbulence simulation. The overset mesh method is used to capture the large motion of the hull at higher speeds. Before the extensive analysis, uncertainty analyses using various time steps and grid sizes were performed for one ship speed case of Fn = 1.19. The results of the present study are compared with those of a model test, other CFD research, and Savitsky's empirical formula. The results of the present study, following the trend of other CFD results, slightly over predict the resistance and under predict the sinkage and, more significantly, the trim.

The Interactive Modeling Method of Virtual City Scene Based on Building Codes

  • Ding, Wei-long;Zhu, Xiao-jie;Xu, Bin;Xu, Yan;Chen, Kai;Wan, Zang-xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.74-89
    • /
    • 2021
  • For higher-level requirements of urban planning and management and the recent development of "digital earth" and "digital city", it is urgent to establish protocols for the construction of three-dimensional digital city models. However, some problems still exist in the digital technology of the three-dimensional city model, such as insufficient precision of the three-dimensional model, not optimizing the scene and not considering the constraints of building codes. In view of those points, a method to interactively simulate a virtual city scene based on building codes is proposed in this paper. Firstly, some constraint functions are set up to restrict the models to adhere to the building codes, and an improved directional bounding box technique is utilized to solve the problem that geometric objects may intersect in a virtual city scene. The three-dimensional model invocation strategy is designed to convert two-dimensional layouts to a three-dimensional urban scene. A Leap Motion hardware device is used to interactively place the 3D models in a virtual scene. Finally, the design and construction of the three-dimensional scene are completed by using Unity3D. The experiment shows that this method can simulate urban virtual scenes that strictly adhere to building codes in a virtual scene of the city environment, but also provide information and decision-making functions for urban planning and management.

Development of a CFD Program for Cold Gas Flow Analysis in a High Voltage Circuit Breaker Using CFD-CAD Integration (CFD-CAD 통합해석을 이용한 초고압 차단기 내부의 냉가스 유동해석 프로그램 개발)

  • Lee, Jong-Cheol;An, Hui-Seop;O, Il-Seong;Choe, Jong-Ung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.5
    • /
    • pp.242-248
    • /
    • 2002
  • It is important to develop new effective technologies to increase the interruption capacity and to reduce the size of a UB(Gas Circuit Breakers). Major design parameters such as nozzle geometries and interrupting chamber dimensions affect the cooling of the arc and the breaking performance. But it is not easy to test real GCB model in practice as in theory. Therefore, a simulation tool based on a computational fluid dynamics(CFD) algorithm has been developed to facilitate an optimization of the interrupter. Special attention has been paid to the supersonic flow phenomena between contacts and the observation of hat-gas flow for estimating the breaking performance. However, there are many difficult problems in calculating the flow characteristics in a GCB such as shock wave and complex geometries, which may be either static or in relative motion. Although a number of mesh generation techniques are now available, the generation of meshes around complicated, multi-component geometries like a GCB is still a tedious and difficult task for the computational fluid dynamics. This paper presents the CFD program using CFB-CAD integration technique based on Cartesian cut-cell method, which could reduce researcher's efforts to generate the mesh and achieve the accurate representation of the geometry designed by a CAD tools.

Vision-based Target Tracking for UAV and Relative Depth Estimation using Optical Flow (무인 항공기의 영상기반 목표물 추적과 광류를 이용한 상대깊이 추정)

  • Jo, Seon-Yeong;Kim, Jong-Hun;Kim, Jung-Ho;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.267-274
    • /
    • 2009
  • Recently, UAVs (Unmanned Aerial Vehicles) are expected much as the Unmanned Systems for various missions. These missions are often based on the Vision System. Especially, missions such as surveillance and pursuit have a process which is carried on through the transmitted vision data from the UAV. In case of small UAVs, monocular vision is often used to consider weights and expenses. Research of missions performance using the monocular vision is continued but, actually, ground and target model have difference in distance from the UAV. So, 3D distance measurement is still incorrect. In this study, Mean-Shift Algorithm, Optical Flow and Subspace Method are posed to estimate the relative depth. Mean-Shift Algorithm is used for target tracking and determining Region of Interest (ROI). Optical Flow includes image motion information using pixel intensity. After that, Subspace Method computes the translation and rotation of image and estimates the relative depth. Finally, we present the results of this study using images obtained from the UAV experiments.

Fatigue Reliability Evaluation of an In-service Steel Bridge Using Field Measurement Data (현장계측데이터를 활용한 공용 중 강교량의 피로 신뢰도평가)

  • Lee, Sang Hyeon;An, Lee-Sak;Park, Yeun Chul;Kim, Ho-Kyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.599-606
    • /
    • 2022
  • Strain gauges and the bridge weigh-in-motion (BWIM) method are the representative field measurement methods used for fatigue evaluationsof a steel bridge-in-service. For a fatigue reliability evaluation to assess fatigue damage accumulation, the effective stress range and the number of stress cycles applied as the fatigue details can be estimated based on the AASHTO Manual for Bridge Evaluations with the field measurement data of the target bridge. However, the procedure for estimating the effective stress range and the stress cycles from field measurement data has not been explicitly presented. Furthermore, studies that quantitatively compare differences in fatigue evaluation results according to the field measurement data type or processing method used are still insufficient. Here, a fatigue reliability evaluation is conducted using strain and BWIM data that are measured simultaneously. A frame model and a shell-solid model were generated to examine the effect of the accuracy of the structural analysis model when using BWIM data. Also, two methods of handling BWIM data when estimating the effective stress range and average daily cycles are defined. As a result, differences in evaluation results according to the type of field measurement data used, the accuracy of the structural analysis model, and the data handling method could be quantitatively confirmed.